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Abstract

In this paper, we propose a full featured and efficient subspace sim-
ulation method in the rotation-strain (RS) space for elastic objects.
Sharply different from previous methods using the rotation-strain
space, except for the ability to handle non-linear elastic materials
and external forces, our method correctly formulates the kinetic en-
ergy, centrifugal and Coriolis forces which significantly reduces the
dynamic artifacts. We show many techniques used in the Euclidean
space methods, such as modal derivatives, polynomial and cubature
approximation, can be adapted to our RS simulator. Carefully de-
signed experiments show that the equation of motion in RS space
has less non-linearity than its Euclidean counterpart, and as a con-
sequence, our method has great advantages of lower dimension and
computational complexity than state-of-the-art methods in the Eu-
clidean space.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: elastic animation, model reduction

1 Introduction

In computer graphics, modeling elastic bodies undergoing large de-
formation is of great interest. Denoting q ∶ Ω ×R → R

3 as the de-
formation offset that takes a point p in the rest shape Ω to its offset
q(p, t) at time t, it is well-known that the dynamics of such sys-
tem is mainly characterized by the pose dependent potential energy
V (q) and velocity dependent kinetic energy T (q̇). Considering
the complexity of the shape and its motion, q is usually discretized
on a tetrahedral mesh with large number of nodes N and elements
T . In other words, the configuration q is discretized as ∣N ∣ node

offsets ui(t) ∈ R3. Conventional FEM method uses the high di-

mensional vector u(t) ∈ R3∣N ∣ composed of ui(t) as discrete con-
figuration space. However, two problems leading to the hurdle of
efficiency are still challenging.

First, solving a high dimensional equation of motion is computa-
tionally too demanding. This motivates a lot of works about dimen-
sion reduction, which restricts the deformation in a linear subspace

as u(t) = ∑∣B∣i=1Bixi(t) with ∣B∣ ≪ ∣N ∣ basis vectors Bi ∈ R3∣N ∣

and the corresponding coordinates xi(t) ∈ R and turns the equation

of motion into a low dimensional one with respect to x(t) ∈ R∣B∣.
Among the early works following this idea is the neat theory of
linear modal analysis [Pentland and Williams 1989]. Being simple
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Figure 1: We propose a novel deformable model capable of large
deformation in a very small configuration space. The state vari-
ables can be efficiently related to Euclidean positions allowing us
to handle all kinds of constraints and external forces. In this exam-
ple, we simulate 8 deformable letters undergoing large deformation
caused by collision and contact with only 10 RS space basis vectors
and 65 Euclidean space basis vectors for each letter.

and fast, these methods cannot represent large displacements and
thus [Barbič and James 2005] proposed to use more basis vectors
from modal derivatives or even non-physical ones via mass-PCA
to cover the prominent deformations. Although one can always ex-
pand the subspace by adding more basis vectors for lower reduction
error, the benefits drop down quickly.

This way becomes even less economic if the algorithm has high
complexity in terms of ∣B∣. Unfortunately, this is usually the case
because the potential energy V is non-quadratic in q and its lin-
early discretized counterpart u and x. For example, the overhead
of frame scales like O(∣B∣4) using [Barbič and James 2005] or

O(∣B∣2∣C∣) using [An et al. 2008], where ∣C∣ is the number of cuba-
ture points used to approximate the non-linear reduced forces.

In this paper we argue that presenting the configuration in the
Rotation-Strain space (RS space) [Huang et al. 2011] has great ad-
vantages. Specifically, a deformation q in the Euclidean space can
be non-linearly mapped into RS space as q̃, which can be reversely
mapped back into Euclidean space. We reformulate the potential
and kinetic energy with respect to q̃, leading to a new equation of
motion in the RS space, which can be similarly discretized and re-
duced as the coordinates in the RS space, i.e. RS coordinates. As a
first advantage, the prominent deformations can be much more ef-
ficiently reduced into a low dimensional space. In typical cases, to
achieve comparable reduction error under ∣B∣ Euclidean space basis

vectors, approximately
√
2∣B∣ RS space basis vectors are enough.

Besides, the non-linearity in the equation of motion can be largely
replaced by the non-linear map between q and q̃. For instance, the



potential energy can be simply quadratic even for large deforma-
tion. Although our method pays the cost of having a non-quadratic
kinetic energy in RS space, we still achieve lower computational
complexity, which is the second advantage.

It is worth mentioning that previous methods using RS coordinates
either simply view it as a geometric post-warping or wrongly keep
the kinetic energy quadratic with respect to the RS space velocity.
As a consequence, these methods are built on an incomplete equa-
tion of motion in RS space and are restricted to linear elasticity
or applications where dynamic error can be tolerated and external
forces are absent.

1.1 Contribution

This paper proposes the first complete equation of motion in the
RS space and derives a full featured elastic simulation method with
the correct kinetic energy, the ability of handling external forces,
collisions and non-linear materials. We show that applying existing
techniques, such as modal derivatives for basis construction, ratio-
nal and cubature approximation for acceleration, our method can
achieve comparable accuracy with lower dimension and complex-
ity than its Euclidean counterpart.

2 Related work

Physically based modelling of elastic deformation in computer
graphics can be dated back to [Terzopoulos et al. 1987]. Sup-
ported by solid mechanics and finite element analysis, the method
has been well established and understood. Vast improvements have
been made over time by [Hirota et al. 2000; Capell et al. 2002;
Müller and Gross 2004; Irving et al. 2006] etc., tailoring it to var-
ious graphics applications. All these methods use large number of
nodes making them largely unavailable to interactive applications.

On the other hand, subspace methods have been recognized as an
efficient tool for modeling salient global deformation. A simple but
efficient method of this kind is linear modal analysis [Pentland and
Williams 1989; James and Pai 2002; Hauser et al. 2003]. It runs
on a small set of global basis vectors which are linearly related to
Euclidean space. Our key observation here is that it is exactly this
linear relationship that prevented LMA from large deformation. If
such relationship is to be kept, [Barbič and James 2005] showed
that it is still possible to model non-linear deformations if one uses
a larger subspace and precomputes the coefficients of high order
polynomials defining the stiffness matrix. But since the online eval-
uation scales like O(∣B∣4), the method can only handle a subspace
with ∣B∣ ≤ 30 in real time. Like [Barbič and James 2005], one
implementation of our method depends on high order polynomi-
als but the evaluation scales like O(∣B∣3) which is more efficient.
Recently, subspace methods have been greatly enhanced to handle
local deformations [Harmon and Zorin 2013] and extended to in-
corporate other physical models such as fluid [Kim and Delaney
2013; Ando et al. 2015].

There are two other closely related works, [Choi and Ko 2005] and
[Huang et al. 2011]. They are both built on linear modal analy-
sis but can approximate non-linear deformations. Their efficacy
has been exploited in [Barbič et al. 2012] for interactive animation
editing. More recently, [Li et al. 2014; Schulz et al. 2014] proposed
methods to accurately handle position constraints under this frame-
work. However, these methods result in severe dynamic errors in
case of large deformations or high velocity as shown in this paper.
Another pitfall is that they cannot capture non-linear mode cou-
pling, although the Poisson reconstruction of [Huang et al. 2011] is
a global procedure. If simply viewing RS method as a geometric
post warping applied to the Euclidean space linear modal analysis,

the dynamics cannot be framed into an equation of motion which is
the true cause of above problems. We show that by viewing the RS
coordinates as the generalized coordinates, these problems can be
easily addressed. We further enhance the RS method by coupling
it with floating frame [Terzopoulos et al. 1987]. The dynamics of
the whole system including centrifugal and Coriolis forces is simu-
lated via the variational formulation [Martin et al. 2011; Hahn et al.
2012; Bouaziz et al. 2014].

More recently, subspace methods have witnessed greater flexibil-
ity with the introduction of cubature optimization [An et al. 2008].
Contrary to [Barbič and James 2005], the method enables efficient
evaluation of approximate reduced forces for arbitrary potential en-
ergy including many hyperelastic materials such as Mooney-Rivlin
[Rivlin 1948] and Arruda-Boyce [Arruda and Boyce 1993]. This
flexibility can actually be exploited in our method by accelerating
the evaluation of non-linear mass matrix using a cubature approx-
imation. Furthermore, we will show that, to achieve comparable
accuracy with [An et al. 2008], fewer cubature points would be
needed on the kinetic side. The idea of cubature optimization [An
et al. 2008] can be further exploited here to replace linear elastic-
ity with other hyperelastic materials. Moreover, we show that the
induced non-linear potential term in our case can actually be par-
tially linearized, making online cubature evaluation more efficient.
We test this idea on Fung’s hyperelastic material [Fung 1981] as an
example.

In principle, any cubature optimizer can be used with our method,
of which the state-of-the-art method is the NN-HTP solver [von
Tycowicz et al. 2013]. Being much faster and more accurate than
[An et al. 2008], their method requires user to estimate the number
of cubature points ∣C∣ as cardinality constraint. This can often result
in either too many or too few points than is actually needed. In
view of this, we propose an alternative cubature solver based on the
Alternating Direction Method of Multiplier (ADMM) [Yang and
Zhang 2011] in Appendix A. Unlike [von Tycowicz et al. 2013],
our method tries to find a set C as small as possible under a user
specified error bound.

3 Rationale of RS Space

In the RS space [Huang et al. 2011], the configuration q̃ is repre-
sented as a field composed of a 3 × 3 antisymmetric part ω and a
symmetric part ǫ for rotation and strain respectively (or 3 rotations
+ 3 shears + 3 compressions/extensions). We use ∇̃ to denote the
(offset) deformation gradient evaluated from ω, ǫ, i.e.:

∇̃(ω(p), ǫ(p)) = exp(ω(p))(ǫ(p) + Id) − Id . (1)

Solving ω, ǫ from the following equation gives a simple mapping
from the Euclidean space to the RS space:

∇q(p) = ∇̃(ω(p), ǫ(p)). (2)

To reconstruct q from q̃, they solve the following Poisson problem
with position constraints to eliminate global translation:

min
q
∫

Ω

∥∇q(p) − ∇̃(ω(p), ǫ(p))∥2dp. (3)

As shown in [Huang et al. 2011], q and q̃ can be simply discretized

as full space coordinates u ∈ R3∣N ∣ and ũ ∈ R9∣T ∣ respectively on
a tetrahedral mesh with ∣N ∣ nodes and ∣T ∣ elements. For efficiency,

the bases B and Ũ reduce the full space coordinates as u =Bx and

ũ = Ũx̃ respectively [Li et al. 2014], and result in the following
reduced version of Equation 3:

minx

∣T ∣

∑
i=1

∥∇i(Bx) − ∇̃i(Ũx̃)∥2∣Ti∣, (4)



where ∇i and ∇̃i compute the deformation gradient in the i-th el-
ement from the Euclidean and RS coordinates respectively. Since∇i is a linear operator, the solution to this minimization can be ab-
breviated in matrix notation:

x(x̃) = (BT∇T
D∇B)†BT∇T

D∇̃(x̃) ≜ Φ∇̃(x̃), (5)

with ∇ assembled from ∇i and ∇̃ from ∇̃i. D is a diagonal ma-
trix assembled from volume of elements ∣Ti∣. The superscript †

denotes matrix inverse restricted to a set of user provided position
constraints. This complication can be removed if B satisfies these
position constraints by itself. We take this assumption and use −1

in place of † hereafter. More details about this reduced RS method
can be found in [Li et al. 2014].

4 The Dynamics in RS Space

In this section, we first present our continuous and discrete ver-
sion of RS-space kinetic and potential energies. They are then
plugged into a timestepping equation in its variational form (see
Section 4.2). The whole procedure is illustrated in Appendix C.

All physically based models of deformable body are governed by
Lagrangian mechanics. Given their respective kinetic part T and
potential part V :

T (q̇) = ∫
Ω

1

2
ρ(p)∥q̇(p)∥2dp, V (q) = ∫

Ω

W (∇q(p))dp,
the locus of motion can be found from the Euler-Lagrange equa-
tion, where ρ(p), q̇(p) are the density and velocity at point p re-
spectively. W (∇q(p)) is the potential energy density at point p
with a specific elastic material W , which is usually non-linear.

After discretization and reduction,these two energies can be simply
represented in terms of x, ẋ:

T (ẋ) = 1

2
ẋ
T
Mẋ, V (x) = ∣T ∣∑

i=1

W (∇i(Bx))∣Ti∣.
Since the potential energy is usually only related to the rotation
invariant strain part ǫ as is the case with corotated linear elasticity,
one remarkable feature of RS space dynamics is that the potential
energy can be largely linearized since ǫ is encoded separately:

V (x̃) = ∣T ∣∑
i=1

W̃ (ǫi)∣Ti∣, (6)

where ǫi is the strain part in (Ũx̃)i, and W̃ has much less non-

linearity than W . For corotated elastic material, W̃ is actually
quadratic.

Viewing the x̃ as a generalized coordinates, one can easily find that
in all the previous RS related methods, x̃ are indeed governed by
an equation of motion with constant mass and stiffness matrices. In
other words, they take a simple quadratic kinetic energy in terms

of ˙̃x. Similar to the linear elastic simulation in the Euclidean space
that uses a quadratic potential energy, i.e. linear elastic forces, such
a brute linearization in RS space results in the same well-known
defects: mode coupling is left out and large error. But this time,
the problem comes from the improper linearization of kinetic en-
ergy, instead of the potential one. In essence, the function x(x̃)
is viewed in these works as a geometric post-warping instead of a
transformation between two configuration spaces. Indeed, it is easy
to correct this problem. Mathematically, the transformation x(x̃)
can be directly formulated into the kinetic energy:

T (x̃, ˙̃x) = 1

2
ẋ(x̃)TMẋ(x̃), (7)

Figure 2: RS coordinates augmented by rigid DOFs. Top: multiple
bodies simulated with contact and collision. Bottom: A U-Shaped
beam with an initial angular velocity, driven by centrifugal forces.
The beam won’t even deform when these forces are ignored.

which combined with Equation 6 leads to a Lagrangian in RS space
that solves the above problem. It is significantly different from the
Lagrangian in the Euclidean space in that the non-linearity in the
potential energy is largely shifted into the kinetic part. For linear
elastic material, this formulation actually exchanges the linear and
non-linear properties of these two energies.

4.1 RS Coordinates in Floating Frame

For modeling free-flying objects, additional degrees of freedom
t,Θ (floating frame) have to be introduced, where t is the 3 × 1
global translation left out by the Poisson reconstruction in Equa-
tion 3 and Θ is the 3× 1 global rotation. With this extended config-
uration space (x̃, t,Θ), ui now takes a more involved form:

ui(t) = exp(Θ(t))(Bx(x̃(t)) + r)i + t(t) − ri, (8)

where r is the rest shape vertex positions. With these components
combined, we can model multiple bodies attached to floating frame
under contact and collision, see Figure 2. Note that if B = Id, Θ is
not needed as in [Huang et al. 2011]. But it is generally necessary
for a subspace simulation.

4.2 Timestepping Scheme

Given the continuous relationship ẋ = ∂x
∂x̃

˙̃x, our novel kinetic en-

ergy can be discretized as T = 1

2
˙̃xTM̃ ˙̃x, where M̃ = ∂x

∂x̃

T
M ∂x

∂x̃

and M = ∂2T

∂ẋ2 are the mass matrices in RS and Euclidean space re-
spectively. A naive timestepping equation can be derived from the
Euler-Lagrange equation:

d

dt
(M̃ ˙̃x) + ∂V

∂x̃
− ∂T

∂x̃
= 0. (9)

However, the terms of d
dt
(M̃ ˙̃x) and ∂T

∂x̃
would involve high or-

der derivatives of x(x̃), which are costly to evaluate. On the other
hand, large dynamic error would be introduced, if one simply as-

sume M̃ constant in each time step (see Figure 3). To avoid their



costly evaluation, we first look into the timestepping equation in the
Euclidean space:

M

∆t2
(xn+1 − xn − ẋn∆t) + ∂V

∂xn+1
= 0.

As noted in [Martin et al. 2011], this has an equivalent variational
form:

argminxn+1
V (xn+1) + 1

2
∥xn+1 − xn − ẋn∆t∥2M/∆t2 .

We follow Equation 6 to replace V (xn+1) directly with V (x̃n+1),
and use x(x̃n+1) in place of xn+1 via Equation 5 for kinetic term
only. After differentiation, we reach our final timestepping equa-
tion:

∂x

∂x̃n+1

T M

∆t2
(x(x̃n+1) − xn − ẋn∆t) + ∂V

∂x̃n+1
= 0. (10)

Note that although we present our method using Backward Euler
integrator for simplicity, other schemes are also available by first
writing them in Euclidean space and then mapping the variational
formulation into RS space. We solve this non-linear equation using
Newton’s method with the approximated Hessian evaluated as:

∂x

∂x̃n

T M

∆t2
∂x

∂x̃n

+ ∂2V

∂x̃2
n

.

Just like Quasi-Newton or inexact Newton method, it slows down
the convergence, but will reduce the cost of each iteration signifi-
cantly without affecting the final solution. In all our experiments,
we limit the number of iterations to 3 for fixed bodies and 10 for
free-flying bodies.

t=1s
t=2s

t=0s

Fullspace Corotated

Linear Inertial Force

Our Method

Figure 3: Fork in a float-
ing frame with strong forces
applied on one end. We ob-
served large deviation from
groundtruth, if one uses lin-
ear inertial force approxi-
mation in each time step.

This scheme has a notable ad-
vantage when applied to free-
flying objects. As shown in
Appendix B, there are non-
diagonal entries in the mass
matrix respect to the extended
configuration space (x̃, t,Θ),
which implicitly takes charge of
centrifugal and Coriolis terms.
Ignoring such entries, the float-
ing frame will has large drift-
ing. It is worth mentioning
that our method properly cap-
tures non-linearity of the inertial
force term in Equation 10. If
one approximates this term to be
linear to the “tangent mass ma-

trix”, i.e. ( ∂x
∂x̃n

T M

∆t2
∂x
∂x̃n
), the accuracy in both deformation and

the floating frame would be lost (see the inset).

5 Modal Reduction and Optimization

Our RS space method is especially suitable for reduced simulation.

We first present a suitable choice of the basis set B and Ũ in Sec-
tion 5.1. For efficient simulation, two approximations to Equation 5
are proposed in Section 5.2.

5.1 Choice of Basis vectors

Theoretically, any set of basis vectors can fit into the above

timestepping equation. The simplest strategy is to set Ũ,B to iden-
tity, which results in common high dimensional “full space” dis-
cretization and low performance simulation. In this case, x can

indeed be viewed as the “full space” coordinates of size 3∣N ∣. For
better efficiency, one can use much fewer basis vectors. Since it has
been shown in [Li et al. 2014] that x̃ can be embedded in a much
smaller subspace than x, we propose to start with a few number of
bases U coming from linear modal analysis or mass-PCA, and con-

vert them into the RS space as Ũ, then expand U into B. In order
to derive B, a classical method is load dependent basis [Idelsohn
and Cardona 1985], which is introduced into graphics community
in [Barbič and James 2005] as modal derivative.

The idea of [Idelsohn and Cardona 1985] is interesting in that it
allows the basis set B to reflect the changing nature of the stiff-
ness matrix. However, since the non-linearity has been shifted to
the kinetic side, the stiffness matrix is constant in our case so that
applying their idea would trivially lead to B =U. Instead, we want

B to reflect the changing nature of the mass matrix M̃. Based on
the observation that the non-linearity comes from the transforma-
tion function u(x̃), an idea similar to [Idelsohn and Cardona 1985]
can be readily applied. Specifically, we derive basis vectors in B
from first and second order derivatives of u against x̃ at origin:

B = [(∇T
D∇)−1∇T

D
∂∇̃
∂x̃i

(0), (∇T
D∇)−1∇T

D
∂∇̃2

∂x̃ix̃j

(0)] ,
for i ≤ j. The basis set constructed from our method is illustrated
in Figure 4.

1
Φ

Figure 4: Extended basis set B constructed for a beam from 5
linear modes, using our method. The first row shows first order
basis vectors and the rest are second order ones.

In our experiments, large displacements can be captured by the
above choice of basis set pair. In order to further justify our choice

of basis set size ∣Ũ∣ and ∣B∣, we ran a large set of simulations on

the fork and dinosaur model with ∣Ũ∣ = 3,5,10 and B = Id (using
subspace only in RS-space, leaving Euclidean space representation
exact). A mass-PCA is then performed on the sequences of frames
in Euclidean space to extract the dominant components forming a
reasonably small subspace B. Several criteria can be applied to de-
termine how many components should be retained. Here, we sim-
ply retain basis vectors whose eigenvalues are bigger than 0.01% of
the largest eigenvalue. This would result in fewer eigenvectors than



the famous Kaiser criterion (retaining eigenvectors with eigenval-
ues bigger than 1) which is known to be an overestimation. In our
experiments, ∣B∣ found following this criterion always gives plausi-
ble approximation to all the groundtruth shapes (case with B = Id)
as illustrated in top Figure 5. Using our criterion, ∣B∣ is plotted

against ∣Ũ∣ in bottom Figure 5. This plot roughly verifies that the

choice of ∣B∣ = O(∣Ũ∣2) is reasonable.

KaiserGroundtruth Rel Err 0.01% Rel Err 0.1% Rel Err 1%

2 4 6 8 10
10

20

30

40

50
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70

80

Figure 5: Top: Our truncation criterion generates plausible ap-
proximation as Kaiser criterion. Allowing larger relative error
would lead to visual artifact. Bottom: We ran simulation on the

fork model using ∣Ũ∣ = 3,5 and the dinosaur model using ∣Ũ∣ = 10.
The background shows some of the extreme deformations achieved

using such ∣Ũ∣. ∣B∣ is then found to be 13,18,55 respectively using
our criterion and 16,23,80 using Kaiser criterion (orange). This

roughly verified our hypothesis that ∣B∣ = O(∣Ũ∣2).

5.2 Jacobian Evaluation

Even though the whole system resides in small subspaces, the time
integration of Equation 10 is still inefficient because the Jacobian
∂x
∂x̃
= Φ ∂∇̃

∂x̃
involved in the mass matrix non-linearly depends on

all ∣T ∣ elements. Here, we exploit two methods to accelerate this
procedure for real-time performance. If ∣B∣ is small (∣B∣ ≤ 100 or∣Ũ∣ ≤ 10 in practice), we can leverage rational approximation of

exp(ωi) to replace ∂x
∂x̃

with a reduced rational function of x̃ whose
coefficients can be precomputed. This is sometimes called a Padé
approximation [Moler and Loan 1978], which is known to be very
efficient for matrix exponentials. However, when ∣B∣ grows larger,
this approximation becomes incompetent compared with cubature
approximation as is noted in [An et al. 2008]. Similarly, we intro-
duce cubature approximation on the kinetic side as an alternative
for larger subspaces. Note that, when floating frame is attached,
the mass matrix takes a more involved form, see Appendix B for its
derivation.

The idea of Polynomial Approximation is based on the observa-
tion that exp(ωi) has simple Taylor series at the origin. When this
series is truncated at order p, we get a polynomial approximation
of order p + 1, which can be precomputed and evaluated efficiently
like [Barbič and James 2005]. It corresponds to solving the partial

differential equation: Ẏ(t) = ωiY(t) using explicit Runge-Kutta

method. In our experiments, we find that p = 3 gives a good ap-
proximation for reasonably large deformation. In this case, x(x̃)
is a forth order polynomial in x̃ whose coefficients can be precom-
puted.

However, it is well known that, to approximate matrix exponen-
tials, rational functions are usually more efficient than polynomials
[Moler and Loan 1978]. This motivates us to consider a reduced
version of rational approximation. In the early stage of our re-
search, we considered using general purpose multivariate rational
approximation. But we soon found it impractical since the conver-
gence of these algorithms has not been well studied. Therefore,
we choose to apply rational approximation only to the matrix expo-
nentials: each rotational part exp(ωi) can be approximated using a(p, q)-rational function Q(ωi)−1P(ωi) where Q(ωi),P(ωi) are
polynomial functions of ωi (see [Moler and Loan 1978]):

P(ωi) =
p∑

j=0

(p + q − j)!p!(p + q)!j!(p − j)!(ωi)j

Q(ωi) =
q∑

j=0

(p + q − j)!q!(p + q)!j!(q − j)!(−ωi)j .
They can then be plugged in Equation 4 to solve for an approximate
x denoted as xpq . However, this would lead to a new right hand side

involving Q−1(ωi) which cannot be precomputed in a polynomial
form. In order to cast the Poisson reconstruction Equation 4 into
a reduced precomputable form, we instead look at the underlying
overdetermined system:

√
D∇Bx =√D [Q−1P(ǫ + Id) − Id] , (11)

with Q,P, ǫ assembled from Q(ωi),P(ωi), ǫi. What Equation 4
does is just approximating Equation 11 in a least square sense. We
can now apply a metric change by multiplying Q from the left to
get:

Q
√
D∇Bx =√D [P(ǫ + Id) −Q] .

This equation can be solved by further multiplying from the left
a set of test functions. For whatever test function used, the derived
left and right hand size would be precomputable as high order poly-
nomials of x̃. For example, if least square solution is desired, the

test function is just Q
√
D∇B itself. However, the polynomials de-

rived this way would be of order as high as max(p + q + 1,2q)
leading to a huge number of coefficients. So that we propose to ex-

clude Q from our test functions, i.e. multiplying (
√
D∇B)T from

the left of both sides, giving the following square system:

Q̄xpq = P̄

Q̄ ≜ B
T∇T

QD∇B
P̄ ≜ B

T∇T
D [P(ǫ + Id) −Q] ,

where the highest order of polynomial is just max(p + 1, q) which

can still be evaluated efficiently. The Jacobian ∂x
∂x̃

approximated in
this way becomes:

∂xpq

∂x̃
= Q̄−1(∂P̄

∂x̃
− ∂Q̄

∂x̃
:xpq).

In Figure 6, largest allowable deformations using different (p, q)
are illustrated. Note that the rational approximation degenerates to
a Taylor approximation by choosing q = 0, which is usually enough
for moderate deformation with p = 3. A choice of q ≠ 0 should be
used only in case of extreme deformation.
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Figure 6: We plotted relative error of polynomial approximation
against deformation in RS space. Clearly, rational approximation is
much more accurate than its Taylor counterpart. We also rendered
the maximal allowable deformation within the relative error of 10%
for the fork model using different p and q.

Finally, we notice that, for practical issue, the expressions for high
order derivative of P̄ and Q̄ can be very complex, making the an-
alytical precomputation like [Barbič and James 2005] unavailable
to us. We instead turn to the general purpose polynomial coeffi-
cient extraction algorithm [Cuyt and Wuytack 1986]. These meth-
ods only require evaluating a polynomial at specified points, which
greatly simplifies the implementation of our method.

The approximation discussed above is enough for many applica-
tions, which is used in most of our examples. This is in part be-
cause the configuration space is rather small under RS coordinates.

However, when large ∣Ũ∣ or ∣B∣ is desired, Cubature Optimiza-
tion would be more competitive as is indicated in [An et al. 2008].
Fortunately, this approximation is still available to our new kinetic
term. Specifically, we can approximate x(x̃) by linearly combining
Φj∇̃j(x̃) with j ∈ C, a small subset of elements. This essentially
defines another reduced approximation to x denoted as:

xc(x̃) =∑
i∈C

wiΦi∇̃i(x̃). (12)

In order to find C, we solve the following sparse coding problem
for a set of p training poses:

minw

p∑
t=1

∥x(x̃t) −∑∣T ∣i wiΦi∇̃i(x̃t)∥2∥x(x̃t)∥2 + φ(w),
where φ is some sort of sparse regularizer on the weighting w =(w1,⋯,w∣C∣) and Φi is the ∣B∣ ×9 block of Φ corresponding to Ti.
As illustrated in Figure 13, our algorithm outperforms [An et al.
2008] by requiring less cubature points for similar accuracy. To
make full use of this property, we need a sparse coding solver that
finds as few cubature points as possible, given a user specified error
bound. The details of our solver can be found in Appendix A.

5.3 Algorithmic Complexity

It is non-trivial to give a comparison of algorithmic complexity
with previous methods because two subspaces are involved in our

method. We first consider the case where B and Ũ are chosen ar-
bitrarily, linear elasticity is used for potential energy and only one

Newton iteration is performed in each time step. Our algorithm is
then composed of two substeps: the evaluation of LHS/RHS of a
linear system and a linear equation solve. For the first substep, two
alternatives are available. If (p = 3, q = 2) rational approximation

is used, the overhead is O(∣B∣2∣Ũ∣2 + ∣B∣∣Ũ∣4 + ∣B∣3). If cuba-

ture optimization is used, the overhead is O(∣C∣∣B∣∣Ũ∣ + ∣B∣2∣Ũ∣ +∣B∣∣Ũ∣2). We refer readers to Appendix D for a detailed derivation.

Then the linear solve costs: O(∣Ũ∣3), while previous methods takeO(∣B∣3). Note that although cubature optimization seems to have
lower complexity in terms of ∣B∣, the constant coefficient is much
larger than that of rational approximation due to the evaluation of

∂∇̃i/∂x̃ at each cubature point. Thus, for small ∣Ũ∣, rational ap-
proximation is more efficient.

To compare this algorithm with [Barbič and James 2005; An et al.

2008], we can use our assumption that ∣B∣ = O(∣Ũ∣2). In this
case, our algorithmic complexity using rational approximation is
dominated by O(∣B∣3) while [Barbič and James 2005] is dom-

inated by O(∣B∣4). For the version using cubature optimiza-
tion, force and stiffness evaluation part of our method scales likeO(∣C∣∣B∣1.5+∣B∣2.5) while [An et al. 2008] scales likeO(∣C∣∣B∣2).
Although our method introduces a second term with higher order
in ∣B∣, the first term is usually dominant due to the large constant
factor and ∣C∣.
6 Hyperelastic Materials

To this point, we have assumed that W is linear elastic material. In-
deed, most of the results are generated with W quadratic in x̃. How-
ever, as mentioned in Section 3, since our method doesn’t exploit
any special structure in W , we are blessed with the flexibility to
incorporate other materials, such as Mooney-Rivlin [Rivlin 1948],
Arruda-Boyce [Arruda and Boyce 1993] or Fung [Fung 1981] to
name just a few, using cubature optimization [An et al. 2008].

Figure 7: The strain of
1

2
(FTF − I) would intro-

duce undesired locking ar-
tifact to our model (brown)
compared with infinitesimal
strain in RS space (red).

In principle, these hyperelastic
laws are built on invariants de-
rived from the strain tensor, see
e.g. [Fung and Tong 2001].
Thus, all we need is a def-
inition of strain tensor based
on our RS space representation.
Note that we can always com-
pute the strain by first recon-
structing the deformation gra-
dient in Euclidean space, but
that would bring extra computa-
tional overhead by involving the
matrix exponentials. Giving the
“pre-warped deformation gradi-
ent” F = ω + ǫ + I, it should be noticed that the strain definition
E = 1

2
(FTF − I) is not equivalent to the usual Green’s strain,

which violates rotational invariance and leads to the locking arti-
fact as illustrated in Figure 7. To properly define the Green’s strain,

E = 1

2
(ǫT ǫ) + ǫ should be used. However, the infinitesimal strain

(or Cauchy’s strain tensor) in RS space E = 1

2
(FT +F) − I = ǫ is

indeed rotational invariant, and could be used in place of Green’s
strain.

As an example, for isotropic Fung’s model [Fung 1981] used in our
examples, the density function is:

WFung(∇q(p)) = WStV K(∇q(p), µ1, λ1) +
c(eWStV K(∇q(p),µ2,λ2) − 1),



where we use two sets of Lame’s coefficients depicting stress under
small and large strain respectively and an additional material coef-
ficient c. As illustrated in Figure 8, this energy is useful for graphic
applications, mimicking the effect of strain limiting. By replacing
Green’s strain with infinitesimal strain in RS space, WStV K be-
comes quadratic in x̃ and we have:

W̃Fung(x̃) = 1

2
x̃
T
K1x̃ + c(e 1

2
x̃TK2x̃ − 1),

where the two StVK terms become two precomputable linear elas-
tic terms with reduced stiffness matrices K1,K2. Other energy
functions can be simplified in a similar way.

Figure 8: Three men backing up the heavy sphere. Initial con-
figuration is on the left. With linear elastic material the model is
too soft to hold the sphere (right), while hyperelastic materials can
effectively limit the strain (middle).

When using non-linear material model, one can use another set
of cubature points for the kinetic term (another possible way is
to use polynomial approximation). In our experiments, we found
it enough to optimize the cubature set for kinetic term only and
reuse it for potential energy by solving an additional NNLS prob-
lem [Lawson and Hanson 1974].

7 Results and Discussion

In this section, we will investigate the dynamic behavior of our
model in terms of energy distribution and system non-linearity. We
then evaluate its efficiency and accuracy with several benchmark
tests.

A first point we want to make is that the proposed model presents
similar dynamic behaviors as conventional corotated/StVK model.
To show this we present a comparison with traditional “full space”
(non)linear elastic models in the Euclidean space, i.e. linear elastic
and corotated/StVK elastic models. From Figure 10, it is clear that
our method achieves almost the same maximal kinetic energy as the
corotated/StVK model (these two are indistinguishable in this test),
while the linear elastic model can reach higher kinetic energy due
to its gross distortion artifact. It should be noticed that our method
has lower frequency of vibration compared with the corotated/StVK
model under the same Young’s modulus. This frequency shift can
be explained by the compatibility error introduced in Equation 4
which is solved in a least square sense. As a result, our model ap-
pears slightly softer. This problem can be alleviated by increasing
Young’s modulus by 12.5% as illustrated by the blue curve in Fig-
ure 10.

A more informative comparison is with previous subspace method
[An et al. 2008] using corotated linear elastic material. We will
show that, when expressed in RS coordinates, the dynamic system
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Figure 9: The MNF change over a 2s simulation run on the fork
model under small gravity (blue, g = 9.81m/s2) and large gravity

(red, g = 49.05m/s2). Both simulations use the same initial con-
figuration and material properties (Young’s modulus=1e7, Poisson

ratio=0.4). The MNFs are found from minimal
√
λ of the problem:

λMv =Kv.

can be largely linearized. Our analysis is based on the observation
that, for a linear system of type Mẍ +Kx = 0, the minimal nat-
ural frequency (MNF) is an invariant solely determined by M,K.
It thus suggests that, for a non-linear system with changing M in
our case or changing K in the case of [An et al. 2008; Barbič and
James 2005], the fluctuation of MNF is an effective indicator of
non-linearity. In Figure 9, we plotted the MNF change over time
for small (in blue) and large (in red) deformations. Starting from an
initial MNF of 20Hz, previous methods present much higher non-
linearity under this criterion than our RS space method. Note that
we use a large set ∣C∣ = 1000 cubature points for this test to rule out
possible noise from cubature approximation error, and the jittering
of the MNF is very likely from the complex behavior of mode cou-
pling.

The snapshots of dynamic simulations from different methods are
shown in Figure 11. Under small gravity, the simple linearization in
Euclidean space (Linear Modal Analysis) introduces significant ar-
tifacts. The linear elastic methods in RS space [Choi and Ko 2005;
Huang et al. 2011; Li et al. 2014] are able to achieve plausible result
in this case (upper row), but fails as well under large gravity (bottom
row). As for our method, Taylor approximation (p = 3, q = 0) is
enough under small gravity but we have to resort to rational approx-
imation under large gravity. Finally, both our method and [Barbič
and James 2005] need to solve a non-linear problem in each time
step for accuracy. To compare the non-linearity, just one New-
ton step is used for these two methods. They present compara-
ble dynamic behavior under small gravity, but our method with
(p = 3, q = 2) generates better results in terms of less energy dis-
passion (see Figure 12 and the accompanying video). The coro-
tated method, another Euclidean space non-linear method [Müller
and Gross 2004], also has excessive damping in this experiment.
Less non-linearity in the RS space makes our method more effi-
cient than the Euclidean ones since less Newton steps are required
for plausible results, which is very attractive for many interactive
applications.

The performance of offline precomputation and online evaluation
for some representative examples is summarized in Table 1. In our
experience, our method is always faster than [Barbič and James
2005]. The computational advantage is remarkable especially when∣Ũ∣ grows larger. As is illustrated in the inset, we use ∣Ũ∣ = 20
and ∣B∣ = 230 allowing each handle of the vase to be deformed
nearly individually. Both rational and cubature approximation can
still achieve real-time performance. [Barbič and James 2005] runs
out of memory after two days of precomputation, while our method
can still handle it within moderate time. Note that we implemented
[Barbič and James 2005] using our general purpose polynomial co-
efficient extraction algorithm. The original analytical method may
consume less memory without requiring to solve a coefficient ma-
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Figure 10: This figure plots the kinetic energy change over time. The simulation runs on the fork model with one end fixed driven solely by

gravitational forces. Both the linear and non-linear models reside in “full space” while our method runs with ∣Ũ∣ = 5, ∣B∣ = 20 and rational
approximation for transfer function. Since we used variational integrator where the total energy is almost conserved, we can omit potential
energy plot to save space.

Linear Modal Analysis
Reduced StVK
Modal Warping/
[Huang et al. 2011]/
[Li et al. 2014]
Our Method p=3 q=0
Our Method p=3 q=2

Figure 11: Comparison between different methods. Under small
gravity (upper row), our method using Taylor approximation runs
the fastest and presents similar non-linear deformation with pre-
vious methods. But under large gravity (bottom row), Taylor ap-
proximation cannot eliminate gross distortion and Modal Warping
presents non-physical deformation. In this case, rational approxi-
mation achieves the best compromise between speed and quality.

trix. But even after the precomputation it is still impossible for
it to handle problem of this size in real-time. Also, we observed
that, under similar accuracy, our method is always faster than [An
et al. 2008] using corotated linear elasticity. In Figure 13, both
our method and [An et al.
2008] are compared with a
groundtruth “full space” StVK
simulation. The set of cuba-
ture points in this experiment
are selected prudently, where
we use simple greedy cuba-
ture optimizer for both methods
with Monte-Carlo acceleration
switched off to rule out possible
bias. In this case, 15 cubature
points achieve 5 − 6% relative
error on both models and 45 cubature points achieve 2 − 3% rel-
ative error. If both methods use 45 points, our method achieves
2× speedup. However, with only 15 points our method is able to

-4000

-2000

0

2000

4000 Modal Warping
Our Method
Linear Modal Analysis
Reduced StVK
Corotated

Time

T
+

V

Figure 12: A comparison of total energy change over time. We
use Backward Euler with only one iteration. In this case the linear
modal analysis is exact. But corotated and StVK models suffer from
excessive damping, while total energy of modal warping changes
non-physically.

achieve comparable accuracy as [An et al. 2008] using 45 points,
but runs 5× faster.

In examples with multiple bodies we use [Hirota et al. 2000] for
collision detection and handling. In these cases, the overhead of
collision processing would quickly dominate the algorithm espe-
cially when large areas of bodies are in contact. This bottleneck
should be removed in our future work.

8 Limitation and Future Work

As a new dynamic model, this work leaves much space for further
exploration. To begin with, by using such a small configuration
space, some local deformations may be left out. Currently, all the
examples illustrate only salient global deformation. But we expect
that methods such as [Harmon and Zorin 2013] can be used as a
patch. Another potential problem is related to basis construction,

where we propose to build Ũ first and then B. An important al-
ternative is to build B directly from animation snapshots as is done
in [Kim and James 2009]. In that case, we still have no idea what
is an effective small Ũ. Also, compared with [Idelsohn and Car-
dona 1985], our basis extension algorithm doesn’t respect nonlinear
stiffness matrix when hyperelastic materials are used. This prob-
lem should be addressed especially when working with anisotropic
materials. Besides, when compared with [Barbič and James 2005]



Model Algor. (p, q)/∣C∣ ∣Ũ∣ Pre. Frm.[Coll.]
Beam xpq (3,0) 5 17 0.45
Beam xc 9 5 55 0.6
Beam StVK N/A 5 19 1.2
Vase xpq (3,2) 20 2530 38
Vase xc 194 20 1613 12
Vase StVK N/A 20 > 50h N/A
Dinosaur+FF xpq (3,2) 10 59 40(per body)[1537]
Letter+FF xpq (3,2) 10 304 21(per body)[2413]
Dinosaur xc 15 10 N/A 0.71
Dinosaur xc 45 10 N/A 2.3
Dinosaur xpq (3,2) 10 59 1.6
Dinosaur [An et al. 2008] 45 10 N/A 4.5

Table 1: Performance of representative examples using different methods. All the tests are done on a desktop computer with a 2.3GHz
E5-2630 CPU. From left to right: Name of model (with optional floating frame: +FF), algorithm used, (p, q) if xpq is used or number of

cubature points if xc is used, size of configuration space (we always use ∣B∣ = ∣Ũ∣ + ∣Ũ∣(∣Ũ∣ + 1)/2), time for precomputation (in sec) and
time for system build and equation solve [time for collision detection] per step (in ms).

Figure 13: Comparison of reduced simulation with “full space”
groundtruth (red). Our method requires only 15 cubature points to
achieve high consistency (left). However, with 20 cubature points,
previous method still exhibits large error (middle). In their case, 45
cubature points are needed for similar consistency (right).

which is exact, our rational approximation scheme would introduce
additional error in kinetic energy and two more additional param-
eters (p, q) to be tuned. For applications considered in this work,
we find the best parameter setting is always p = 3, q = 0/2. Other
choices lead to either visible dynamic error or slow online evalua-
tion. In these cases, cubature approximation should be used. A fi-
nal problem is that, in order to achieve reasonable consistency with
“fullspace” methods, the Young’s modulus used in our method has
to be rescaled since our model appears softer. Unfortunately, we
still don’t have an automatic algorithm for determining this scal-
ing factor. This problem essentially reflects the fact that, by using
Equation 3, we reconstructed q from q̃ only in a least square sense,
which is very similar to the discontinuous galerkin method [Kauf-
mann et al. 2008].
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A ℓ1-Sparse Cubature Solver

In this section, we present the cubature optimizer used in this work.
The solver features user controllable relative error bound and near
optimal solutions. We start from the following standard form of
non-negative sparse coding problem:

argminw ∥Aw − b∥2 + φ(w)
s.t. w ≥ 0.

In order to control the relative error, ∥Aw−b∥ ≤ δ is added as hard
constraint and we optimize for φ(w) = ∥w∥0. In order to make the
non-convex problem tractable, the ℓ0 term is approximated using
iteratively reweighted ℓ1. After these modifications, we end up with
the following convex problem:

argminw c
T
w

s.t. ∥Aw − b∥ ≤ δ w ≥ 0,
where ci = (wold

i )p−1 is the weighting. Fortunately, this prob-
lem has been well studied and can be solved very efficiently using
ADMM method [Yang and Zhang 2011]. It works by introducing
slack variables xr,zr to reformulate it as:

argminw c
T
w

s.t. Aw + zr = b w = xr∥zr∥ ≤ δ xr ≥ 0.
ADMM then works by iteratively optimizing the following Aug-
mented Lagrangian:

argminw c
T
w

−λT
z (Aw + zr − b) + βz

2
∥Aw + zr − b∥2

−λT
x (w − xr) + βx

2
∥w − xr∥2

s.t. ∥zr∥ ≤ δ xr ≥ 0.
In each iteration, it first updates xr,zr , w respectively and then ad-
just λx, λz . For zr,xr , the subproblem can be solved analytically
to find zr = Pδ (λz/βz − (Aw − b)), where Pδ is the projection



to ∥zr∥ ≤ δ and xr = max(w − λx/βx,0). While for w, the
subproblem is just a linear solve:

(βx + βzA
T
A)w = βzA

T (b − zr) +AT
λz + βxxr + λx − c.

Finally, λx, λz are updated according to:

λz = λz − γβz(Aw + zr − b)
λx = λx − γβx(w − xr)
γ ∈ (0, (√5 + 1)/2) .

The convergency of this method is proved in [Yang and Zhang
2011]. The algorithm pipeline is summarized in Algorithm 1. Our
experiment shows that even after one outer iteration, the solution
becomes quite sparse. By discarding components of w very close
to zero, subsequence ADMM solves can be much faster.

Algorithm 1 Reweighted ADMM Cubature Solver

1: p = 1, k = 1,wk = 1
2: while p > 0.3 do ▷ Outter loop
3: for all i do ▷ Discard small wi

4: if wk
i not small then

5: set ci = (wk
i )p−1

6: else
7: Set ci = 0
8: end if
9: end for

10: while ∥wk
−wk−1∥/∥wk∥ > ǫ do ▷ ADMM Loop

11: Update zr,xr

12: Solve linear system for wk+1

13: Update λx, λz

14: k = k + 1
15: end while
16: p = p − 0.1
17: end while

Scaling to large mesh is one issue for an implementation of the
above method, since it requires solving a dense system to update
x. We propose to remove this bottleneck by using a hierarchical
version of ADMM solver. Specifically, when the number of mesh
elements N exceeds a threshold (N = 3000 in all our examples), we

cluster the mesh into approximately
√
N groups and solve a group-

wise ADMM first. Then, only the elements in the selected groups
need to be considered. Specifically, we use a nearest neighbor clus-
tering seeded with Poisson Disk Sampling within the volume. This
procedure can be applied recursively to deal with mesh of arbitrar-
ily large size while restricting the matrix size of underlying solver.
More importantly, this treatment won’t violate the user specified
error bound δ.

To validate our method, Figure 14 illustrates the cubature computed
for some of our examples. And in Table 2, we compare our method
with the Greedy solver [An et al. 2008]. Clearly, our solver is ad-
vantageous in both time and number of cubature points needed to
reach a specified relative error. For comparison, the Greedy method
is used as an internal solver in the hierarchical framework. The
original version [An et al. 2008] using randomly sampled candi-
dates almost always results in even more cubature points.

Besides, a much more efficient solver based on iterative hard thresh-
olding (NN-HTP) has been recently proposed in [von Tycowicz
et al. 2013]. A comparison with their method is shown in the last
column of Table 2, where all the parameters and stopping criteria
of NN-HTP are chosen according to [von Tycowicz et al. 2013].
Since their method requires an additional parameter: the maximal

Figure 14: Cubature points computed for some large meshes using
our ℓ1 Cubature Solver.

number of cubature points which is hard to determine, we cannot
compare the two algorithms based on relative error. Instead, we set
the maximal number of cubature points equals to the number of cu-
bature points returned by our algorithm and see if they can achieve
the same level of accuracy. The result shows that NN-HTP is usu-
ally less accurate but more efficient. In conclusion, if user wants to
maximize the online cubature performance, our method should be a
better choice than NN-HTP because ℓ1-sparse solver automatically
determines the suitable number of cubature points without over-
estimation and the optimized cubature set usually achieves lower
relative error than all existing methods.

B Attaching to Floating Frame

When our new dynamic system is attached to a floating frame, the
configuration space is extended to (x̃, t,Θ). From these general-
ized coordinates, the Euclidean space deformation is recovered by
Equation 8. One drawback of these coordinates is a much more
involved mass matrix. But it can still be evaluated in a subspace.
Assuming that lumped “full space” mass matrix MId is used, we
want to evaluate:

∂uT

∂(x̃, t,Θ)MId

∂u

∂(x̃, t,Θ) =
⎛⎜⎝
M̃
A ∑m

i=1 ρi∣Ti∣ Id
B C D

⎞⎟⎠ ,
where we have omitted the symmetric upper-triangular part. The
two diagonal submatrices are invariant to the frame and the remain-
ing blocks A,B,C and D can be assembled as follows:

Aij = Ξ1

imklx
m
,jR

kl

Bij = (Ξ2

mkl +Ξ
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mnklx
n)xm

,jR
pk
,i R

pl

Cij = (Ξ1

jmklx
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jkl)Rkl
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where the precomputed tensors Ξ∗ are:

Ξ
1

ijkl = ∂u

∂ti

T

MIdeklBj Ξ
2

ikl = rTMIdeklBi

Ξ
3

ijkl =BT
i MIdeklBj Ξ

4

ikl = ∂u

∂ti

T

MIdeklr

Ξ
5

kl = rTMIdeklr ,

eij is a block diagonal matrix with eij in each 3× 3 diagonal block
and R = exp(Θ). Note that all these derivations are based on the
assumption that MId is a lumped “full space” mass matrix.

C A Summary of Equations

We provide here a summary of notations and equations used in our
method. As illustrated in the figure, one needs to define the RS



Model m ∣B∣ A ℓ1 Greedy NN-HTP

Vase 71082 230 802 194/1373 351/9568 1.3%/709
Three Men 87973 65 69 50/164 103/421 1.6%/26
Bumpy 106014 135 193 407/1167 >500/31990 2.3%/419
Fertility 90486 135 158 234/558 301/7759 2.0%/301
Homer 249309 135 429 170/1658 278/11820 2.0%/1007

Table 2: From left to right: name of model, number of elements, number of extended basis vectors, time taken (in sec) for generating matrix
A, number of cubature points found/time taken (in sec) using our ℓ1 optimizer and the greedy solver, relative error achieved with a same
number of cubature points/time taken (in sec) using NN-HTP solver. We set relative error to be 1% and use 1000 training poses for all our
examples.

space kinetic energy (brown line) and potential energy (red line) in
order to reach the final timestepping equation. We have discussed
three ways to evaluate our kinetic term: the accurate method x; the
high order polynomial approximation xpq; the cubature approxima-
tion xc.

D The Algorithmic Complexity

Algorithm 2 Substep Using Polynomial Evaluation

1: Evaluate Q̄, ∂Q̄

∂x̃
with overhead O(∣B∣2∣Ũ∣2)

2: Evaluate P̄, ∂P̄
∂x̃

with overhead O(∣B∣∣Ũ∣4)
3: Evaluate Q̄−1 with overhead O(∣B∣3)
4: Solve for x = Q̄−1P̄ with overhead O(∣B∣2)
5: Solve for ∂x

∂x̃
= Q̄−1( ∂P̄

∂x̃
− ∂Q̄

∂x̃
:x) with overhead O(∣B∣2∣Ũ∣)

6: Evaluate M̃ = ∂x
∂x̃

T
M ∂x

∂x̃
with overheadO(∣B∣2∣Ũ∣+ ∣B∣∣Ũ∣2)

Algorithm 3 Substep Using Cubature Optimization

1: Evaluate x, ∂x
∂x̃

from Equation 12 with overhead O(∣C∣∣B∣∣Ũ∣)
2: Evaluate M̃ = ∂x

∂x̃

T
M ∂x

∂x̃
with overheadO(∣B∣2∣Ũ∣+ ∣B∣∣Ũ∣2)

We derive the algorithmic complexity of our method in this section.
We start from the version using (p = 3, q = 2) polynomial ap-
proximation. In this case, the overhead of each step is illustrated in

Algorithm 2, where the dominant terms areO(∣B∣2∣Ũ∣2+∣B∣∣Ũ∣4+∣B∣3). And for the version using cubature optimization for Jacobian
approximation, the procedure is illustrated in Algorithm 3, where

the dominant terms are: O(∣C∣∣B∣∣Ũ∣ + ∣B∣2∣Ũ∣ + ∣B∣∣Ũ∣2).


