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Abstract. We present a method to find globally optimal topology and
trajectory jointly for planar linkages. Planar linkage structures can gen-
erate complex end-effector trajectories using only a single rotational ac-
tuator, which is very useful in building low-cost robots. We address the
problem of searching for the optimal topology and geometry of these
structures. However, since topology changes are non-smooth and non-
differentiable, conventional gradient-based searches cannot be used. We
formulate this problem as a mixed-integer convex programming (MICP)
problem, for which a global optimum can be found using the branch-and-
bound (BB) algorithm. Compared to existing methods, our experiments
show that the proposed approach finds complex linkage structures more
efficiently and generates end-effector trajectories more accurately.

Keywords: mixed integer optimization, topology optimization, trajec-
tory optimization

1 Introduction

A planar linkage is a mechanical structure built with a set of rigid bodies
connected by hinge joints. This structure typically has one effective degree-of-
freedom actuated by a rotational motor. Since they impose a minimal burden on
controller design, these structures are widely used as building blocks for low-cost
toys and robots, as illustrated in Figure 1. By combining a series of hinge joints,
the end-effector of the planar linkage will trace out a complex curve that can
fulfill various requirements of different types of locomotion, including walking
and swimming [11,22].

A challenging problem in mechanics design is to find the linkage structure
with an end-effector that will trace out a given curve. This problem is chal-
lenging in that it searches over three coupled variables: topology, geometry, and
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trajectory. The linkage topology determines which rigid bodies are connected
and the order of their connections. Clearly, the topology is a non-smooth and
non-differentiable decision variable. The linkage geometry determines the shape
of each rigid link. Finally, the trajectory determines the pose of the linkage
structure at each time instance. The last two variables are smooth and differ-
entiable, but directly optimizing them induces non-convex functions. Previous
works [9,29] have proposed various solutions to address problems of this kind.
These methods rely on random searches, such as A∗ [9] and covariance matrix
adaptation [29], to try different topologies. Then, for each topology, they perform
non-linear programming (NLP) under the given topology to determine the ge-
ometry and trajectory. However, these methods are computationally expensive
because a huge number of samples are needed for the random search to con-
verge. Moreover, even after determining the topology, these methods can find
only sub-optimal solutions due to the non-convex nature of NLP.

Fig. 1: An example of planar linkages,
used in a strandbeest robot for 2D walk-
ing. See [18] for more details.

Main Results: Given the input
of a target trajectory, we present a
new method that can efficiently com-
pute a planar linkage structure with
globally optimal topology and geom-
etry configurations and an accurate
trajectory reproduction. Based on re-
cent advances in mixed-integer model-
ing [24,6,23], we relax this joint search
problem as an MICP problem, the
global optimum of which is arbitrar-
ily close to the global optimum of the
original problem. The main benefit of
MICP relaxation is that the search can
be accomplished efficiently using the BB algorithm. BB is more strategic than
random search, as used by [29], because it cuts impossible or sub-optimal search
spaces at an early stage, leading to higher efficiency. We have compared MICP
with prior methods using different examples. The results show that our proposed
MICP approach finds solutions more efficiently and that the resulting structure
matches the target trajectory more closely.

In the rest of the paper, we first review related work in Section 2 and then
formulate our joint search problem in Section 3. The MICP model and vari-
ous constraints required for the integrity of the planar linkage are presented in
Section 4. Results and the evaluation of the proposed approach are given in
Section 5.

2 Related Work

In this section, we review related work in robot design optimization, mixed-
integer modeling, and topology optimization.
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Robot Design Optimization: Robot design optimization is a superset of
conventional topology and truss optimization [16] where the decision variables
are only topology or geometry. This is because the specification of a robot design
is given as a movement pattern [10], leading to a joint search in the space-
time domain. The joint search problem greatly expands the search space. As a
result, many prior methods do not work since they only optimize a subset of
decision variables [10,22,1,19,21]. Recent works [29,9,20] search for all variables
simultaneously. However, these methods are based on random search techniques,
which usually require a large amount of trial and error and find sub-optimal
solutions.

Mixed-Integer Modeling: The main benefit of mixed-integer modeling is
the use of the well-studied BB algorithm [14]. BB allows us to find the global op-
timum of non-convex programming problems, while only visiting a small fraction
of the search space. Mixed-integer models have been applied to a large variety
of problems including motion planning [7], inverse kinematics [6], network flows
[5], and mesh generations [3]. By applying the big-M method [23], McCormick
envelopes and piecewise approximations [15], and general non-convex problems
can be easily relaxed as MICP problems. Prior works [12,17] have also formu-
lated topology optimization problems as MICP. However, our work is the first
to formulate the planar linkage problem as MICP and we employ MICP to con-
currently find the optimal topology, geometry, and trajectory of a linkage.

Topology Optimization: Topology optimization of a continuum is a well-
studied problem [16]. An efficient algorithm can smoothen the problem and
use gradient-based method to search for locally optimal structures over a search
space of millions of dimensions. This technique has been widely used in the design
of soft robots [27,26,28]. However, the optimization of articulated robots is more
challenging because the optimized structure must satisfy the joint constraints,
making the decision variable non-smooth. Existing techniques use mixed-integer
[12,17] or random search techniques [29,20] to optimize over these decision vari-
ables.

3 Joint Search for Planar Linkages

In this section, we introduce the problem of joint searches for planar linkages.
Our problem is to search for a structure, as illustrated in Figure 2a, where we
have a set of rod-like rigid bodies connected with each other using hinge joints.
As a result, the end points of these rigid bodies can take at most N distinct
positions, denoted as node set: n1,··· ,N . Of these nodes, n1 is the rotational
motor and nN is the end-effector. Within one limit cycle, n1 follows a circular
curve centered at

(
XC , YC

)
with a radius R:

n1(t) =
(
sin(t)R+XC , cos(t)R+ YC

)
, (1)

which induces trajectories of other nodes ni(t) via forward kinematics. The other
N −2 nodes can be one of two kinds: fixed or movable. In addition, a rigid body
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n1n2

n3

n4

n5

n6

n7

n3→21 n5→21

n4→32 n6→54 n7→65

Fig. 2: (a): The Jansen’s mechanics used in Figure 1 is a planar linkage structure
involving 7 nodes. The motor node n1 is green, the fixed node n2 is red, the
movable nodes n3,4,5,6 are black, and the end-effector node n7 is blue. Our goal
is to find the topology and geometry of the linkage such that the end-effector
curve matches the blue target curve. (b): Our MICP formulation is based on
the prior symbolic representation [13,1]. This representation assumes that each
node is connected to exactly two other nodes with lower indices: n3→21, n5→21,
n4→32, n6→54, n7→65.

may exist between each pair of nodes ni,j , in which case ‖ni(t) − nj(t)‖ is a
constant.

Given these definitions, the input to our problem is a target end-effector
trajectory n∗N (t). The output of our method is the following set of variables
defining both the topology and geometry of a planar linkage:

– An integer vector of size N (the number of nodes), which containing the
type of each node: fixed or movable.

– An N × N symmetric binary matrix CN×N where Cij = 1 means a rigid
body connects ni,j .

– The position of n1,··· ,N (t) at a certain, arbitrary time instance t.

The goal of our method is to find the globally optimal set of variables that
minimizes

∫
‖nN (t)− n∗N (t)‖2dt.

4 MICP Formulation of Joint Search

In this section, we present a set of linear constraints and quadratic objective
functions for relaxing the joint search as an MICP problem. We first introduce
the set of topology constraints to ensure the well-posed nature of the structure
in Section 4.1 and then present constraints and objective functions for geometric
correctness in Section 4.2.
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4.1 Topology Constraints

As illustrated in Figure 2b, our method is based on the symbolic representation
presented in [13,22], which assumes that each movable node is attached to two
other nodes. These nodes can be of any type but must have lower node indices.
As a result, forward kinematics can be processed sequentially even on linkage
structures with closed loops.

Since the number of nodes is unknown, we assume that the maximal number
of nodes is K > N . For each node other than the first motor node n1, we need
a binary variable Ui such that Ui = 1 indicates ni is used as a part of the
planar linkage structure. In addition, we need another binary variable Fi such
that Fi = 1 indicates ni is fixed and Fi = 0 indicates ni is movable. These two
sets of variables are under the constraint that only a used node can be movable.
In addition, we assume that the last node nK is the end-effector that must be
used. In summary, we introduce the following sets of variables and node-state
constraints:

∃Ui, Fi ∈ {0, 1} ∀i = 1, · · · ,K
1− Fi ≤ Ui

U1 = UK = 1

F1 = 0.

(2)

Our next set of constraints ensures local topology correctness. It ensures that
each movable node is connected to exactly two other nodes with lower indices.
As a result, the movable node and the two other nodes will form a triangle and
the position of the movable node can then be determined via the Law of Cosine
[10]. We introduce auxiliary variables C1

ji to indicate whether nj is the first node

to which ni is connected. C2
ji indicates whether nj is the second node to which

ni is connected. In addition, we introduce two verbose variables C1,2
0i = 1 to

indicate that ni is connected to nothing. The resulting constraint set is:

∃Cji, C
1
ji, C

2
ji ∈ {0, 1} ∀j, i = 1, · · · ,K ∧ j < i

Cji = C1
ji + C2

ji

C1
ji ≤ Uj ∧ C2

ji ≤ Uj

i−1∑
j=1

Cji = 2− 2Fi ∀i = 2, · · · ,K

∃Cd
0i ∈ {0, 1} ∀d = 1, 2

i−1∑
j=0

Cd
ji = 1.

When ni is fixed in the above formulation, then Fi = 1 in Equation 3 and all
Cji are zero except for C1,2

0i = 1 due to the sum-to-one constraints. If ni is
movable, then Fi = 0 and Cji sums to two. As a result, there must be j1, j2 < i
such that C1

j1i
= 1 and C2

j2i
= 1. Note that j1 and j2 must be different because
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otherwise the constraint that Cji ∈ [0, 1] will be violated. In addition, since the
first node n1 is the motor node, it is excluded from these connectivity constraints.
However, this naive formulation will require binary variables for each pair of nj

and ni, which requires O(K2) binary variables all together. Instead, we adopt
the idea of special ordered set of type 1 (SOS1) [25] and model these constraints
using O(KdlogKe) binary variables. Intuitively, SOS1 constrains that only one
variable in a set can take a non-zero value and it can be achieved by using a
logarithm number of binary variables. The improved constraint set is:

∃Cji, C
1
ji, C

2
ji ∈ [0, 1] ∀j, i = 1, · · · ,K ∧ j < i

Cji = C1
ji + C2

ji

C1
ji ≤ Uj ∧ C2

ji ≤ Uj

i−1∑
j=1

Cji = 2− 2Fi ∀i = 2, · · · ,K

∃Cd
0i ∈ [0, 1] ∀d = 1, 2

{Cd
ji|j = 0, · · · , i− 1} ∈ SOS1

i−1∑
j=0

Cd
ji = 1.

(3)

Finally, we introduce a third set of constraints to ensure global topology
correctness. This set of constraints ensures that the linkage structure contains
no wasted structures. In other words, each node must have some influence on the
trajectory of the end-effector node and the first motor node must be connected
to others. We model these constraints using the MICP formulation of network
flows [5]. Specifically, each node ni will generate an outward flux that equals to
Ui, and we assume that there is a flow edge defined between each pair of nodes
with capacity Qji. We require inward-outward flux balance for each node except
for the end-effector node:

∃Qji ∈ [0,∞] ∀j, i = 1, · · · ,K ∧ j < i

Qji ≤ CjiK

Ui +

i−1∑
j=1

Qji =

K∑
k=i+1

Qik ∀i = 1, · · · ,K − 1,

(4)

where we adopt the big-M method [23] in the second constraint to ensure that
only edges between connected nodes can have a capacity up to K. Using a similar
idea, we also formulate a constraint that a movable node must be connected to at
least one other movable node. We assume that each node ni generates a reversed
outward flux that equals to 1−Fi, and we assume that there is a flow edge defined
between each pair of nodes with capacity Rji. We require inward-outward flux
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balance for each node except for the motor node:

∃Rji ∈ [0,∞] ∀j, i = 1, · · · ,K ∧ j < i

Rji ≤ CjiK ∧Rji ≤ (1− Fj)K

i−1∑
j=1

Rji = 1− Fi +

K∑
k=i+1

Rik ∀i = 2, · · · ,K,
(5)

These three constraints ensure that the planar linkage structure is symbolically
correct, independent of the concrete geometric shape.

4.2 Geometric Correctness

The main utility of geometric correctness constraints is to compute the exact
positions ni =

(
xi, yi

)
of each node in the 2D workspace. These positions are

functions of time t and we sample a set of T discrete time instances t1,··· ,T . In
this section, we will always use superscripts for timestep indices. For example, at
time instance td, the position of ni is nd

i . We want to find a common geometric

specification such that all the end-effector positions n1,··· ,T
K can be achieved.

The most important geometric variable is the length of each rigid rod. We
define these parameters implicitly using a set of constraints such that, if ni and
nj are connected, then the distance between these two nodes is a constant for
all time instances. In other words, we need the following set of constraints if
Cji = 1:

‖nd
j − nd

i ‖2 = ‖n(d mod T )+1
j − n

(d mod T )+1
i ‖2 ∀1 ≤ d ≤ T, (6)

after which any distance ‖nd
j − nd

i ‖2 can be used as the rigid rod length.
However, there are two challenging issues in modeling these constraints that

can affect the performance of the MICP solver. A first challenge is to mini-
mize the use of binary variables. Because any pair of nodes nj and ni might be
connected, a naive formulation will require a number of binary variables pro-
portional to K2. Instead, we introduce auxiliary term dd

1i =
(
dxd1i, dy

d
1i

)
, which

indicates the relative position between ni and the first other node connected to
it at time instance td. Similarly, dd

2i =
(
dxd2i, dy

d
2i

)
indicates the relative position

between ni and the second other node connected to it. These definitions induce
the following big-M constraints:

∃{dx, dy}dki ∀k = 1, 2 ∧ i = 2, · · · ,K ∧ d = 1, · · · , T
|{dx, dy}dki − {x, y}dj + {x, y}di | ≤ 2B(1− Ck

ji) ∀j = 1, · · · , i− 1,
(7)

where B is the big-M parameter, implying that all the node positions lie in a
bounded region [−B,B]2. Note that the first motor node n1 follows a circular
curve (Equation 1), which requires special definitions of dd

11,d
d
21 as follows:

{dx, dy}d11 = {dx, dy}d21 = {xd1 −XC , y
d
1 − YC}, (8)
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(
α
α̃

)
=

S∑
s=1

λs

(
αs

α2
s

)
{λ1,··· ,S} ∈ SOS2

S∑
s=1

λs = 1,

(9)

α1 α2 α3 α4 α5

α2

Fig. 3: An illustration of the piecewise linear upper bound (blue) of the quadratic
curve α2 (red) with S = 5.

where the center of rotation
(
XC , YC

)
is used as an additional auxiliary vari-

able. The second challenge is that these constraints are non-convex because they
involve quadratic terms. Fortunately, efficient formulations have been developed
to relax non-convex functions using piecewise linear approximation [15] and a
special ordered set of type 2 (SOS2) [25]. SOS2 effects a constraint that at most
two of the variables in an ordered set with consecutive indices can take non-zero
values. To use these formulations, we decompose the range [−B,B] evenly into
S − 1 pieces with S nodes:

{αi| −B = α1 < α2 < · · · < αS = B}.

As a result, for any α ∈ [−B,B], a piecewise linear upper bound of α2 is α̃,
which is defined in Equation 9. As illustrated in Figure 3, α2 ≤ α̃ and this upper
bound can be arbitrarily tight as S → ∞. This formulation has been used in
[6] to discretize the space of unit vectors. In the rest of the paper, we use a
tilde to denote such an upper bound. Using these upper bounds, the equidistant
constraints can be approximated using the following conic constraints:

∀i = 1, · · · ,K ∧ d = 1, · · · , T

‖nd
i − n

(d mod T )+1
i ‖2 ≤ (2

√
2B)2(1− Fi)

∀k = 1, 2 ∧ i = 1, · · · ,K ∧ d = 1, · · · , T

‖d(d mod T )+1
ki ‖2 ≤ d̃x

d

ki + d̃y
d

ki + (2
√

2B)2Fi

‖dd
ki‖2 ≤ d̃x

(d mod T )+1

ki + d̃y
(d mod T )+1

ki + (2
√

2B)2Fi

(10)

where the last term on the right-hand sides is the big-M term that excludes fixed
nodes. The idea is to require the length of two vectors to be smaller than the
upper bound of one another. Note that Equation 10 converges to Equation 6
as S → ∞. This formulation will require an upper bound for all dd

ki and each
upper bound requires dlogSe binary variables. As a result, our formulation will
introduce O(4TKdlogSe) binary decision variables. We also introduce a last
constraint to ensure that rigid rods are not degenerate by ensuring minimal rod
length lmin:

∀k = 1, 2 ∧ i = 1, · · · ,K ∧ d = 1, · · · , T

d̃x
d

ki + d̃y
d

ki ≥ l2min − ((2
√

2B)2 + l2min)Fi.
(11)
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vL
1

vR
1

γ1

γ2γ3

γ4

γ5

γ6 γ7

γ8

(a)

ε

dd
1i

dd
2i

(b)

γ1

γ2γ3

γ4

γ5

γ6 γ7

γ8

γ9

γ10
γ11

γ12

γ13

γ14
γ15

γ16

(c)

Fig. 4: Linear relaxation of angle constraints. (a): We cut SO(2) into 8 sectors,
each of which is selected by a γ-flag using SOS1 constraints. A sector, e.g.
the sector selected by γ1, is bounded by its left/right unit-length plane-normal
vectors vL

1 /vR
1 . (b): If dd

1i falls in the red area, then we restrict dd
2i to its left

half-space (gray), which is at least ε-apart (blue). However, note that when dd
1i

moves across sector boundaries, the gray area will jump discontinuously. (c): To
avoid discontinuous changes in the restricted region for dd

2i when dd
1i undergoes

continuous changes, we propose to double cover SO(2) using 2S = 16 sectors.

By ensuring a fixed rigid rod length across all time instances, we can make
sure that all the end-effector positions nd

K can be achieved using the same pla-
nar linkage structure. In practice, however, we can only change the end-effector
position by moving the first motor node n1, so we still need to ensure that the
mechanics system will not glitch or does not have singular configurations. The
most intuitive classification of singular configuration is the rank-deficiency of the
Jacobian matrix [2]. However, this classification cannot be used in an MICP for-
mulation because it is non-convex and the Jacobian matrix cannot be computed
under our implicit representation of rigid rods. Instead, we adopt a heuristic
proposed by [22], which avoids singularities by ensuring that, for any movable
node ni, the two vectors dd

1i and dd
2i are not colinear. In other words, the triangle

area formed by these two vectors is positive. This constraint takes the following
bilinear form:

dd
1i × dd

2i ≥ ε,

where ε is a small constant. Although this constraint is bilinear, we can use
McCormick envelopes [15] to relax it as a conic constraint. If the range [−B,B]
is cut into S− 1 segments, then this formulation will introduce O(4TKdlogSe).
However, a critical flaw of this formulation is that a McCormick envelope is
an outer-approximation. As a result, the exact linkage structure can still be
singular, although its conic relaxation is non-singular. To ensure strict non-
singular formulation, we propose a constraint whereby the angle between the
two vectors is larger than ε, which is equivalent to the positive area constraint
when combined with Equation 11:

]dd
1i,d

d
2i ≥ ε. (12)
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In addition, we propose an inner approximation such that the exact linkage
structure is also guaranteed to be non-singular. Concretely, we cut the space of
SO(2) into S sectors, as illustrated in Figure 4a, so that dd

1i will only fall into
one of the S sectors. If dd

1i falls in a particular sector, then we restrict dd
2i to

its left half-space that is at least ε-apart, as shown in Figure 4b. If we use an
SOS1 constraint to select the sector in which dd

1i falls, then only O(TKdlogSe)
binary decision variables are needed. A minor issue with this formulation is that
the allowed region of dd

2i jumps discontinuously as dd
1i changes continuously. We

can fix this problem by double-covering the region of SO(2) using 2S sectors,
as shown in Figure 4c, which will introduce O(TKdlog2Se) binary decision
variables.

To formulate these constraints, we assume that each sector of SO(2) is flagged
by a selector variable γl, which is bounded by its left/right unit-length plane-
normal vectors vL

l /vR
l . Then the following constraints must be satisfied if dd

1i

falls inside the sector:
< vL

l ,d
d
1i >≥ 0

< vR
l ,d

d
1i >≤ 0

< R(ε)vL
l ,d

d
2i >≤ 0

< R(π)vR
l ,d

d
2i >≥ 0,

(13)

where R(•) is the 2× 2 counter-clockwise rotation matrix by angle •. Combined
with the fact that Equation 13 should only be satisfied for one particular sector
and that only movable nodes satisfy these constraints, we have the following
formulation:

∀i = 2, · · · ,K d = 1, · · · , T

< vL
l ,d

d
1i >≥ 2

√
2B(γdl,i − 1)− 2

√
2BFi

< vR
l ,d

d
1i >≤ 2

√
2B(1− γdl,i) + 2

√
2BFi

< R(ε)vL
l ,d

d
2i >≤ 2

√
2B(1− γdl,i) + 2

√
2BFi

< R(π)vR
l ,d

d
2i >≥ 2

√
2B(γdl,i − 1)− 2

√
2BFi

{(γd1,1i, · · · , γd2S,i} ∈ SOS1
2S∑
l=1

γdl,i = 1.

(14)

These constraints will avoid singular configurations.

4.3 The Complete MICP Formulation

Combining all the constraints, we minimize two objective function terms. First,
we want the end-effector trajectory to match the target trajectory specified by
users. Second, to minimize manufacturing cost, we want to use as few rigid
rods as possible. To formulate the first objective term, we need to replace a
trajectory with a discrete number of samples. However, the order of these samples
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is discarded. In practice, we find that better solutions can be found by preserving
the order between these samples. This requirement is formulated by making
sure that nd

K will be visited by the end-effector sequentially when the motor
node rotates by 2π either clockwise or counter-clockwise. This requirement is
formulated using the following MICP constraints:

∀d = 1, · · · , T − 1

‖R(
2π

T
)dd

11 − dd+1
11 ‖2 ≤ (2

√
2B)2D

‖R(−2π

T
)dd

11 − dd+1
11 ‖2 ≤ (2

√
2B)2(1−D),

(15)

where D is a binary variable to choose which direction the motor rotates. Putting
everything together, we arrive at the following MICP problem:

argmin

T∑
d=1

‖nd
K − nd∗

K ‖2 + w

K∑
i=1

Ui

s.t. Equation 2, 3, 4, 5, 7, 8, 10, 11, 14, 15,

(16)

where nd∗
K are the sampled points on the target trajectory and w the regulariza-

tion weight of the cost-efficiency term. Since non-convexity is not accepted by
MICP, the solution returned by MICP is only a piecewise linear approximation
of the original nonlinear problem. To return a solution with exact constraint
satisfaction, we refine the solution by solving an additional NLP locally using
the following formulation:

argmin

T∑
d=1

‖nd
K − nd∗

K ‖2

s.t. Equation 2, 3, 4, 5, 7, 8, 6, 12, 15,

(17)

where we fix all the binary variables Ui, Fi, D. Note that Equation 17 is a mixed-
integer NLP (MINLP) generalization of Equation 16 and we have the following
lemma:

Lemma 1. Equation 16 converges to Equation 17 as S →∞, and the BB algo-
rithm can find the global optimum for Equation 16.

5 Results and Evaluations

We have implemented our method using Gurobi [8] as our MICP solver for
Equation 16 and Knitro [4] as our NLP solver for Equation 17. All the experi-
ments are performed on a cluster with 4 CPU cores per process (2.5GHz E5-2680
CPU). Compared with prior work [22], the main benefit of our formulation is
that we can search for planar linkage structures from a target trajectory of the
end-effector that requires trivial effort from users. In Figure 5, we show a list of
different target trajectories and the optimized planar linkage structures.
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Fig. 5: We show 10 different optimized planar linkage structures with the end-
effector trajectory in blue and the user-specified target trajectory in yellow. For
all these examples, we choose K = 5 ∼ 7, S = 9, and T = 10 ∼ 20. The
end-effector trajectory matches closely with the target trajectory.
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Fig. 6: We plot the average computational time for solving MICP in 35 example
problems using different parameters in Figure 5. The computational time for
solving MICP grows exponentially with K, logS, and T .

The performance and accuracy of our algorithm heavily depend on the three
parameters: the max number of rigid rods K, the number of pieces for approx-
imating S, and the number of samples on the target trajectory T . Since the
cost of solving MICP grows exponentially with the number of binary decision
variables, which is proportional to K, logS, and T , our method cannot scale
to large problems, as illustrated in Figure 6. In practice, we find that, given a
maximal computational time of 10 hours, we can compute globally optimal so-
lutions for most benchmarks with K ≤ 7, S ≤ 9, and T ≤ 20. This is enough if
we design robots part-by-part, as is done in the Theo Jansen’s strandbeest. For
other benchmarks, the computational time is longer than 10 hours, but a feasi-
ble solution has been found, although it is sub-optimal. In Figure 7, we plot the
average convergence history of a typical optimization. Since we express all the
topology and geometric requirements as hard mixed-integer constraints, feasible
solutions are quite rare in the search space and the optimizer takes most of the
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Fig. 7: We plot the convergence history curve for 3 typical optimizations by
showing the objective function values plotted against the number of nodes ex-
plored in the BB search tree. The BB algorithm spends most of its time exploring
infeasible nodes and the first identified feasible solution is usually very close to
the optimal solution, so that the optimizer will return the globally optimal so-
lution after refining the solution for 5− 10 times.

computational time pruning infeasible solutions. Once the first feasible solution
is found, it is usually very close to the optimal solution and the optimizer refines
it for less than 10 times to reach the optimal solution.

(a) (b) (c) (d)

Fig. 8: SA can find good enough solutions for simple target curves (a). However,
for more complex curve shapes, SA failes (b) while MICP succeeds (c). We also
plot the objective function values returned by SA and MICP in 10 computational
examples in (d), where MICP outperforms SA in 9 instances.

We have also compared our method with conventional global search algo-
rithms such as simulated annealing (SA). We implemented a similar algorithm
as proposed in [29]. In this algorithm, we randomly generate 1000000 samples by
random moves and accept these samples according to the simulated annealing
rule. Each random move can be of one of three kinds: geometric change, node
addition, and node removal. In geometric change, the length of a rigid rod is
randomly perturbed. In node addition, a new node is added and the length of
the new rigid rods are randomly picked. In node removal, the end-effector node
is removed and the last movable node is used as the new end-effector node. We
enhance standard SA algorithm by making sure that each random move is valid.
In other words, we introduce an inner loop and repeated try random moves until
the modified planar linkage structure satisfies all the topological constraints and
has no singular configurations. As illustrated in Figure 8a, SA algorithm can
find satisfactory results for simple target curves, but SA usually fails for more
complex curve shapes (Figure 8bc). In Figure 8d, we also show the objective
function values after convergence. The solution of MICP is almost always better
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than the solution of SA. However, SA outperforms MICP in one example, which
is probably due to the inexact constraint satisfaction of MICP.

Usually, the design of a planar linkage structure is not only subject to a target
end-effector trajectory, but also to various other user constraints. For example,
the user might require certain nodes to be fixed, which can be easily achieved
using our MICP formulation. The user may also reserve certain parts of the
robot for some functional units that cannot be occupied by the planar linkages.
This type of constraint can be expressed as collision avoidance between a planar
linkage structure and a specified convex region, which can be formulated as
MICP constraints using a prior method [7]. In Figure 9, we show results taking
these constraints into consideration.

(a) (b) (c)

Fixed

Too Close

Bounded Region

Fig. 9: We show results taking two different user constraints into consideration.
(a): Results with no constraints. The optimizer is guided by the regularization
term to use as few nodes as possible. (b): We fix the center of rotation and the
optimizer finds a more complex structure with 6 nodes. (c): If we do not want
the structure to be too close to the target curve, we can add a bounded region
and create a constraint that any nodes (other than the end-effector node) should
be inside the bounded region.

6 Conclusion & Limitations

We present a globally optimal formulation to jointly search for both the topol-
ogy and geometry of a planar linkage structure. Our formulation relaxes the
problem into a MICP, for which optimal solutions can be found efficiently using
BB algorithms. Our results show that our formulation can search for complex
structures from trivial and intuitive user inputs, i.e. target end-effector trajec-
tories. Additionally, various design constraints can be easily incorporated. For
moderately complex structures, the solve time using these formulations falls in
the range between minutes and hours.
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(a) (b) (c) (d)

Ambiguity
Colinear

Sub-Optimal

Fig. 10: Failure cases and issues with our formulation. (a,b): MICP only returns
the single global optimum. But similar target trajectories can lead to two differ-
ent linkage structures. (c): We only satisfy geometric constraints approximately,
so that the linkage structure might not satisfy these constraints exactly. In this
example, we have two rigid rods being colinear. (d): Usually, the early feasible
solutions found by MICP are of low-quality, and we have to wait for the MICP
to find the global optimum.

As a major limitation, the solve time increases quickly with the number of
possible rigid bodies in the planar structure (K) and the number of samples
on the target trajectory (T ) because the number of decision variables depends
on a multiplication of these two parameters. A related issue is that MICP only
satisfies the geometric constraints approximately. As illustrated in Figure 10c,
a predicted target trajectory with approximate constraints satisfaction can be
different from a predicted target trajectory with exact constraints satisfaction
after solving Equation 17. To reduce the approximation error, we have to increase
the approximation granularity by using a larger S, which in turn increases the
number of binary decision variables. Finally, note that our formulation does
not generate all possible planar linkage structures but only those that allow
sequential forward kinematic processing. This problem is inherited from [13,1]
by using the same representation as these works. Allowing more general planar
linkages is also possible under the MICP formulation by using a new formulation
of topology constraints.

6.1 Future Work

Our future research will focus on a balance between global optimality and for-
mulation efficiency. Such a balance could possibly be achieved by using MINLP
formulations. In addition, we observe that different planar linkages, as shown in
Figure 10ab, can generate very similar target trajectories. This indicates that
there exist many local optima with objective function close to the global opti-
mum. However, a BB algorithm will only return the single global optimum. In
addition, we found that we need to wait until the BB algorithm finds its global
optimum; the intermediary solutions are not usually usable, as illustrated in
Figure 10d. A potential future direction is to use algorithms such as Bayesian
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optimization that can explore multiple local optima and return many solutions
for users to make a choice.
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