Versatile Control of Fluid-Directed Solid Objects
Using Multi-Task Reinforcement Learning

BO REN*, College of Computer Science, Nankai University, China
XIAOHAN YE*, College of Computer Science, Nankai University, China
ZHERONG PAN, Lightspeed & Quantum Studios, Tencent America, USA
TAIYUAN ZHANG, College of Computer Science, Nankai University, China

We propose a learning-based controller for high-dimensional dy-
namic systems with coupled fluid and solid objects. The dynamic
behaviors of such systems can vary across different simulators and
the control tasks subject to changing requirements from users.
Our controller features high versatility and can adapt to chang-
ing dynamic behaviors and multiple tasks without re-training,
which is achieved by combining two training strategies. We use
meta-reinforcement learning to inform the controller of changing
simulation parameters. We further design a novel task representa-
tion, which allows the controller to adapt to continually changing
tasks via hindsight experience replay. We highlight the robustness
and generality of our controller on a row of dynamic-rich tasks
including scooping up solid balls from a water pool, in-air ball
acrobatics using fluid spouts, and zero-shot transferring to unseen
simulators and constitutive models. In all the scenarios, our con-
troller consistently outperforms the plain multi-task reinforcement
learning baseline.

CCS Concepts: ¢ Computing methodologies — Physical sim-
ulation.

Additional Key Words and Phrases: fluid/solid coupling, optimal
control, reinforcement learning

ACM Reference Format:

Bo Ren, Xiaohan Ye, Zherong Pan, and Taiyuan Zhang. 2022.
Versatile Control of Fluid-Directed Solid Objects Using Multi-Task
Reinforcement Learning. ACM Trans. Graph. 1, 1 (July 2022),
16 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

While physics-based fluid animations have achieved an un-
precedented visual realism, their dynamic behaviors are no-
toriously difficult to modify or edit by users. This is largely

*Both authors contributed equally to this research.

Authors’ addresses: Bo Ren, rb@nankai.edu.cn, College of Computer
Science, Nankai University, Tianjin, China; Xiaohan Ye, yexiaohan@
mail.nankai.edu.cn, College of Computer Science, Nankai University,
Tianjin, China; Zherong Pan, Lightspeed & Quantum Studios, Tencent
America, Seattle, USA, zrpan@tencent.com; Taiyuan Zhang, College of
Computer Science, Nankai University, Tianjin, China, imaginer.tai@
gmail.com.

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and /or a fee. Request permissions
from permissions@acm.org.

© 2022 Association for Computing Machinery.
0730-0301/2022/7-ART $15.00

https://doi.org/10.1145 /nnnnnnn.nnnnnnn

Fig. 1. We highlight our 4 benchmarks of coupled fluid-solid control
tasks: (a) Controlling a spoon to scoop up as many balls from the
water pool as possible; (b) Controlling a spoon to scoop up all red
balls from the water pool, while avoiding picking up the black ones;
(c) Controlling the pose and out-flux of two water spouts to keep three
balls balanced; (d) Controlling two water spouts to push the balls and
hit the music keys with precise timing, according to online-selected
music scripts. In all these scenarios, we train the agents in low-res
simulators and transfer the learned skills to a high-res simulator online
to generate high-quality goal-directed animations.

due to their high-dimensionality and strong coupling between
degrees-of-freedom. Over the years, graphic researchers have
proposed various fluid editing techniques including ghost
forces [McNamara et al. 2004; Pan and Manocha 2017a; Tang
et al. 2021; Treuille et al. 2003], shape blending [Raveen-
dran et al. 2014; Thuerey 2016], and stylization [Sato et al.
2018]. However, these methods inconvenience users by either
injecting non-physical components into the animation (e.g.,
ghost control forces), taking strong assumptions on the fluid
flow (e.g., single-phase flow, no free surface), or incurring
unacceptably high computational costs (typically hours to
days).

Technically, the two main obstacles towards ideal fluid
controllers are non-smoothness and underactuation. Several
recent researches [Hu et al. 2019a,c] highlight the efficacy of
modal-based control of (possibly high-dimensional) robots
guided by differentiable dynamic systems. However, it is un-
likely for these techniques to succeed in fluid control tasks

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 e Bo Ren, Xiaohan Ye, Zherong Pan, and Taiyuan Zhang

due to the ubiquitous, discontinuous fluid-solid boundary con-
ditions, breaking the differentiable assumption. On the other
hand, classical fluid control algorithms [Pan and Manocha
2017a; Tang et al. 2021; Treuille et al. 2003] assume a single-
phase flow where ghost forces can be injected everywhere in
the simulated domain, i.e., fluid dynamics are fully actuated.
This assumption allows the ghost forces to affect the control
objective instantaneously, based on which several prior works
[Fattal and Lischinski 2004; Raveendran et al. 2012] only
need to consider a single timestep of simulation. For higher
visual realism, however, it is preferred to keep the fluid dy-
namic model intact and only change the boundary conditions.
Further, many control problems involve two-way fluid-solid
coupling where the single-phase assumption does not hold.

Recently, large-scale deep reinforcement learning (DRL) has
opened doors to complex real-time decision-making, involving
many graphical problems like character motion control, mate-
rial manipulation, and co-design [Ma et al. 2018; Peng et al.
2018, 2017; Spielberg et al. 2019; Zhang et al. 2020]. DRL
has previously been adopted by [Ma et al. 2018] to control
two-way coupled liquid-solid systems where control signals
are only applied as boundary conditions. However, their con-
troller is optimized to solve a single task for a specific-type of
fluid simulator and parameters, which significantly limits their
applications in the graphics community. Taking interactive
games for example, a controller may be adapted to multiple
tasks based on user’s control signals. For animation editing
applications, users might modify the fluid simulation environ-
ment (such as resolution, viscosity, etc.) and the controller
should adapt to these changes without re-training. Therefore,
solving the general problem of multi-task fluid-directed object
control will contribute to more diversities in animation editing
phases of the movie industry, and concretely help interactive
virtual game designers.

Main Result: We propose a novel policy search algorithm
for coupled fluid-solid dynamic systems, where the trained
controllers have a high universal performance over a distri-
bution of different simulation environments and tasks. Our
method is inspired by the meta-RL techniques [Finn et al.
2017; Gupta et al. 2018; Rakelly et al. 2019]. Specifically, we
keep informing the controller of different simulators’ hyper-
parameters, including physical parameters of the constitutive
model, resolution, and discretization choices. Moreover, since
we treat the simulation resolution as a hyper-parameter, we
are able to train the policy network using low-resolution simu-
lators and transfer them to high-resolution ones with a small
overhead, which significantly improves the sample efficacy. To
generalize the controller over multiple tasks, we adopt hind-
sight experience replay (HER) [Andrychowicz et al. 2017],
which reuses unsuccessful trajectory samples as surrogate
optimal samples for a different task. Unlike the original HER
where the task involves a single object, we allow a fluid spout
to control multiple objects. To this end, we design a compact
task representation. Our approach can achieve transferable
control on complex multi-body multi-task problems without

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

re-training. We highlight these new features on a row of 4
benchmarks illustrated in Figure 1.

2 RELATED WORK

We review prior works on the control of fluids, solid objects,
as well as the design of general controllers.

2.1 Fluid Control

A large body of fluid control algorithms [McNamara et al.
2004; Pan and Manocha 2017a; Tang et al. 2021; Treuille et al.
2003] assume fully actuated dynamic systems where ghost
forces can be injected anywhere and some algorithms [Pan
and Manocha 2017a; Tang et al. 2021; Treuille et al. 2003]
further assume single-phase flows. As a result, a short control
horizon suffices and the dynamic system is differentiable.
However, computing the gradient information is still costly.
In parallel, researchers have also proposed non-physical fluid
animation editing algorithms. Nielsen and Bridson [2011]
proposed to simulate a large body of fluids at a low-resolution
and switch to a high-resolution for fine details. [Thuerey 2016]
proposes to synthesize new animations from existing data via
physics-inspired interpolation. More recent works [Kim et al.
2019; Prantl et al. 2019; Xie et al. 2018] propose deep neural
architectures to synthesize small-scale details from a dataset
of examples. These methods are fast, but meanwhile, may
loss some physical authenticity, especially at the boundary of
interpolation. Recently, Li et al. [2019] and [Li et al. 2020]
showed that end-to-end learning architectures can be trained
to mimic fluid simulators, which is inherently amenable to
control problems by providing analytical gradients. However,
their results are limited to small-scale examples. Our method
is complementary to all these techniques in that we do not
modify the underlying physics model, while achieve control
by only changing the boundary conditions. Similar to our
method, recent researches [Hu et al. 2019¢; Ma et al. 2018;
Schenck and Fox 2018] are increasingly relying on data-driven
algorithms to control the true dynamics of high-dimensional
deformable bodies.

2.2 Controller Design for Solid Objects

Thanks to the low-dimension nature of near-rigid solid ob-
jects, their control and simulation algorithms typically run at
real-time, which find many applications in the graphics com-
munity. Early works [Popovié¢ et al. 2003] control the pose of
solid objects without considering contacts and collisions. More
recent methods such as [Toussaint et al. 2020] jointly infer
discontinuous contact events as well as continuous solid object
poses. Solid control algorithms are most widely used in charac-
ter animations. This direction of research evolved from using
(partially) manually designed controllers [Si et al. 2015; Tan
et al. 2011; Wang et al. 2012; Yin et al. 2007], contact implicit
trajectory optimization [Coros et al. 2012; Pan and Manocha
2018a; Pan et al. 2019; Posa et al. 2014; Tan et al. 2012;
Tassa et al. 2012], all the way to deep reinforcement learn-
ing [Bergamin et al. 2019; Min et al. 2019; Park et al. 2019;

Peng et al. 2018, 2021; Won et al. 2020; Yu et al. 2018], with
a trend of minimizing the human intervention in controller
design and parameterization. Learning-based techniques have
also been used to synthesize animations without considering
physical models, e.g., in [Starke et al. 2021]. Among these
works, a closely related problem to ours is swimming creature
control [Min et al. 2019; Pan and Manocha 2018b; Si et al.
2015] where characters utilize fluid contact forces to propel
themselves. Instead, we assume unactuated near-rigid objects
that are controlled indirectly using high-dimensional fluid
bodies, which adds an additional layer of challenge.

2.3 Transfer Learning and Multi-Task RL

Transfer learning algorithms enable a controller to quickly
adapt to new environments from small amounts of experiences.
To this end, the gradient-based meta-RL methods [Finn et al.
2017; Mendonca et al. 2019] and the context-based meta-RL
methods [Duan et al. 2016; Rakelly et al. 2019] assume that a
controller can utilize a few steps of gradient decent or sample
a small amounts of experiences online to generate task-specific
contexts. These works find important applications in hard-
ware robot control, when transferring from simulated to real
environments. In our application, however, the context is de-
fined by different simulation parameters (resolution, viscosity,
density, etc.) and algorithms (smoothed particle hydrodynam-
ics [Becker and Teschner 2007], particle-in-cell methods [Zhu
and Bridson 2005], material point methods [Hu et al. 2018],
etc.). Complementary to transfer learning, multi-task RL al-
gorithms aim at a controller that performs reasonably well
over a set of control objectives. To this end, task-based RL
algorithms [Andrychowicz et al. 2017; Schaul et al. 2015; Zhao
et al. 2019] learn a universal policy to solve multiple tasks.
Schaul et al. [2015] generalises the state and task to learn a
task-based policy. Andrychowicz et al. [2017] uses task-based
experience replay method to tackle tasks with sparse reward
signals. Rather than generalizing states and tasks, we propose
a compact task representation to tackle multiple tasks.

3 PROBLEM FORMULATION

We use Figure 2 to illustrate the problem and the major
components of our framework. In this showcase, tasks may
involve maintaining balls in air and switching horizontal ball
positions. The controller is informed of the encoded tasks, e.g.,
the latter task can be expressed by the ball index sequences
(indices ordered in the horizontal direction) to be controlled
and sent into the controller. From the index sequence, along
with other fluid and object states, we train a policy network
to generate control signals. The users are able to modify
the simulation environments (e.g. doubling the simulator’s
resolution of discretization). The controller must recognize
and adapt to these simulator changes on the fly. In this section,
we first introduce the mathematical model of our coupled
fluid-solid dynamics system, and then give an overview of our
method for the transferable multi-task control problem.

Versatile Control of Fluid-Directed Solid Objects
Using Multi-Task Reinforcement Learning e 3

Task

State

. Recognizer

Parameters
Controller

Control Signal

Fig. 2. In this showcase, the two fluid spouts (a) emit liquid (b) and
push the three balls (c) to keep a dynamic force equilibrium. The
controller is informed of the ball indices, i.e., the encoded task, as
well as the current state of the coupled dynamic system. Given the
state, we train a recognizer network to decode the current simulation
parameters (resolution, simulator type, etc.), which is also forwarded
to the controller.

Name (State) Dimension in 2D/3D Range

Position (g, c) 2/3 (—00,00)
Velocity (g, c) 2/3 (=00, 00)
Orientation (g, ¢) 1/3 (=m,m)
Angular Velocity (g, ¢) 1/3 (=m,m)
Out-flow Flux (¢ only) 1/1 (0,1)

Table 1. Components of g, ¢ per rigid body. For controlled fluid spouts,
we model their emission status as continuous out-flow fluxes within
(0,1), which is interpreted as the cross-section area of emitted fluid
columns.

3.1 Coupled Fluid-Solid Dynamics System

We consider two different fluid simulation algorithms, smoothed
particle hydrodynamics (SPH) [Becker and Teschner 2007]
and material point method (MPM) [Hu et al. 2018], and refer
readers to these two papers for low-level technical details. On
the high-level, we represent the state of our coupled system
as a 3-tuple: s £ (u q c), where u is the fluid’s velocity
field, ¢ is the state of controlled solid objects (e.g. position,
orientation, velocity, and outflux of fluid spouts), c is the con-
catenated states of all the passive, uncontrolled solid objects
(e.g. balls in the water pool). In a 2D (resp. 3D) simulation
domain, the dimension of ¢ is 6ns (resp. 12n,), the dimension
of ¢ is Tn. (resp. 13n.), and the dimension of u (denoted
as N) is simulator dependent (see Table 1 for detailed state
encoding). For an SPH simulator, N is the number of fluid
particles, while for a MPM simulator, N is the number of
grid cells. Here ns is the number of solid objects, which in our
experiments is at most ns < 6, n. is the number of controlled
solid objects, which in our experiments is at most n. < 2. We
represent the state of a rigid object as ¢ = (T w T W),
where x is the position and w is the orientation. In our MPM
experiments, N is orders of magnitude larger than that of
the solid state c. A discretized physics simulator can then
be denoted as a discrete transfer function: si11 = f(s¢,as, 2),
where we use subscript ¢ to indicate a variable at the ¢th time

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

4 e Bo Ren, Xiaohan Ye, Zherong Pan, and Taiyuan Zhang

instance and a; is the action vector encoding all the control
signals. Inspired by the usage of environmental variables in
the context of meta-RL, we introduce a variable z to denote
simulator parameters that remain constant throughout each
simulation procedure, which is a major difference from [Ma
et al. 2018]. Our considered environmental variables include
grid resolution, solid density, fluid density, gravity, and the
type of simulator.

3.2 Simulator-Transferable, Multi-Task Control

We use the standard problem definition of a Markov decision
process (MDP) in continuous action spaces and follow defini-
tions in [Haarnoja et al. 2018]. In a single-task setting, our
control problem is defined by the tuple (S A p = v),
where s € S is the state space, a € A is the action space,
p(st+1]8¢t, ar) is the state-transition probability, which is de-
rived by injecting noises into our discrete fluid simulator.
The objective of RL is to maximize the following cumulative,
bounded reward signal r: S x A — R:

J=Erip) [Z ’YtTt(St»at)] . (1)

t=0

Our policy is represented as a function 7 : S — A that maps
each state to the corresponding optimal action, maximizing

the expected return. Here p(7) = p(so) [Toeq P(St+1]5t, ae)m(ailst)

is the distribution of trajectories, (so, ao, $1,-..), under policy
7 with initial state distribution p(so), and v is the discount
factor.

In a multi-task setting, we introduce a task space G where
each g € G represents a sub-task (e.g., one of the ball index
sequences in Figure 2). We further account for changing simu-
lation environments by introducing a latent simulator feature
space z € Z. Inspired by [Rakelly et al. 2019], the controller
can generalize to multiple environments by modeling z as a sto-
chastic distribution during the training stage. As a result, our
reward signal is augmented as a function r : SX AXGxZ — R
and policy as a function 7 : S x G x Z — A. Finally, our
augmented objective function becomes:

J=Erpn) |:Z Vre(se, ai, 9,2) | (2)

t=0

where p(7) = p(so) [Ioeqp(stt1lst, ar)m(ailse, g, z). We fur-
ther improve the robustness of our controller via novel task
representation and HER techniques (explained in Section 4.4
in detail). We always assume the number of available con-
trollers is less than the number of objects to be controlled, i.e.
ne < ns, which is a challenging setting where the controller
must learn to choose objects to be controlled and switch
between controlling multiple objects.

4 METHOD

In this section, we introduce the designs of our RL-based
multi-body control method for both simulator-transferable
and multi-task control. We first describe the network architec-
ture in Section 4.1 and the efficient training baseline for the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

policy network in Section 4.2. We then use a context-based
meta-RL technique [Rakelly et al. 2019] to encode simula-
tor parameters, which involve parameters of the constitutive
model and solver types. An efficient transfer technique is
described in Section 4.3, where a sample-selection strategy
during the training stage significantly improves the conver-
gence rate. Thanks to the transfer technique, we can train
the controller using a low resolution and transfer the control
skills to a higher resolution. As illustrated in Table 2, our
training resolution is 3 — 5 times lower than the test-time res-
olution, saving over one order of magnitude of computational
time. We further achieve multi-task learning by training a
universal controller that can solve all tasks in a discrete set
(Section 4.4). Key to the efficacy of our multi-task controller
are the HER mechanism and a compact task representation
that greatly reduces the training complexity.

4.1 Network Architecture

Our controller parameterization is illustrated in Figure 3.
Fluid bodies are peculiar in that they have an extremely high-
dimensional state u. Fortunately, the velocity field is highly
smooth and correlated as mentioned in [Tompson et al. 2017],
which means we can use dimension reduction techniques to
obtain an effective low-dimensional representation. Indeed,
the difference of resolution mainly affects the details of the
fluid surface and small vortices, which do not serve an im-
portant role in liquid-solid force interactions compared to the
bulk motion, which can be nicely captured in a down-sampled
velocity field. Therefore, we pre-train a velocity encoder map-
ping u to a low-dimensional feature space ¥ (u). To train the
velocity encoder, we first run our simulators using randomly
sampled actions and record the velocity fields. We minimize
the reconstruction loss to update the parameters of the ve-
locity encoder, to which the same procedure was used in [Ma
et al. 2018]. Furthermore, we find that, compared to prior
velocity encoders where the last convolution layer is flattened
and the encoded feature is computed through an additional
fully connected layer, a Fully Convolutional Network (FCN)
can better encode fluid features and bring better performance
in downstream tasks. However, our domain size is anisotropic.
In order to make the number of learnable parameters in FCN
approximately the same, we use an anisotropic convolution k-
ernel with a proportional size to the domain size. In summary,
we denote the low-dimensional state as: 5§ = (P(u) q ¢),
i.e., our observation space consists of a fluid velocity field,
position and velocity information of both controlled and un-
controlled objects. We list the network parameters in Table 3
and Table 4, respectively.

Our main control module is an actor-critic framework,
where an actor m,(al3, z) maps the extended state (3, z) to a
low-dimensional action a. The critic consists of one double-Q-
network [Hasselt et al. 2016] and one value-network, which
approximates the state-action- and state-value function, re-
spectively. These two networks are used to guide the actor.
Finally, after a full trajectory is simulated, we collect transfer

Versatile Control of Fluid-Directed Solid Objects
Using Multi-Task Reinforcement Learning e 5

Example Training-Time Resolution

Test-Time Resolution Avg. N (Training) Avg. N (Testing)

Training Time

Solid Scooping from Water Tank(2D)
Targeted Solid Scooping(2D)
Multi-Solid Balancing(3D)
Multi-Solid Acrobatics(3D)
Multi-Solid Music Player(3D)

128 x 128 ~ 192 x 192
128 x 128 ~ 192 x 192
80 x 48 x 32 ~ 120 x 72 x 48
80 x 48 x 32 ~ 120 x 72 x 48
80 x 48 x 32 ~ 120 x 72 x 48

512 x 512 49K 460K 30h
512 x 512 49K 466K 38h
400 x 240 x 160 15K 739K 54h
320 x 192 x 128 15K 932K 70h
320 x 192 x 128 9.3K 433K 74h

Table 2. Specifications of the training and testing environments. The benchmarks are measured using an MLS-MPM simulator and on a single
Nvidia RTX2080ti GPU. Training resolutions significantly affect training time and is randomly sampled in a certain range. As a result, #particles
used in the MPM solver varies drastically and we plot the average #particles throughout each training/testing. Training times are measured as

wall-time from start to convergence.

L Velocity

recom Decoder
Fig. 3. We illustrate all the
Velocity Velocity networks used by our architec-
e BhEedo ture, including the fluid-velocity
autoencoder, the parameter en-
Critic coder, the double-Q-network,
and the value-network. All the
by networks except for the ve-
Value Double-Q Task Task Act b locity auto-encoder are MLP-

R tati ! . ‘ R tati < GO i Y .
Network Network epresentation g 9 epresentation g s, which take the velocity fea-
ture as inputs. We show the
critic-architecture (resp. actor-
Lcritic Lactor

tuples b =< &, a¢, S¢+1 >, from which the simulator parame-
ters are inferred using the parameter encoder. The modules
mentioned above are all parameterized using MLPs without
any weight-sharing. We illustrate the network architecture in
Figure 3 and list the network parameters in Table 5.

4.2 Off-Policy Reinforcement Learning

Prior method [Ma et al. 2018] trained RL-based fluid con-
trollers using an on-policy algorithm [Schulman et al. 2015],
which iteratively updates controller parameter 6 via sample-
approximate of VJy. Such algorithms require new trajectory
samples even for a small update of policy parameters, which
largely limits their sample efficacy. On the other hand, an
off-policy algorithm [Haarnoja et al. 2018] splits the respon-
sibility between two networks: actor and critic. The critic
network Qo(s¢,at, g, z) learns to approximate cumulative re-
ward from a given state-action tuple. It can then be used as a
surrogate objective for updating the actor without requiring
new trajectory samples. As a result, off-policy algorithms are
oftentimes more sample efficient, which is crucial in our ap-
plications where fluid simulation samples are highly costly to
compute. Further, it has been shown [Hasselt et al. 2016; Sil-
ver et al. 2014] that training the actor and critic alternatively
while fixing the target Q-network can significantly stabilize
RL training and avoid over-estimation of value functions. In-
spired by these findings, we choose to update our actor, critic,
and parameter encoders in an alternating manner.

ACM Trans. Graph., Vol. 1, No. 1, Article .

Epac'fg';“” architecture) on the left (resp.
ncoder . :
4% right) side of the example state.

Layer Kernel Stride #Filters Activation

convy (7,7) 2 64 LeakyReLU
conve (7,7) 2 64 LeakyReLU
convs (5,5) 2 128 LeakyReLU
convy (5,5) 2 128 LeakyReLU
convs (5,5) 2 128 LeakyReLU
convs (2,2) 2 128 LeakyReLU
convr (2,2) 2 64 LeakyReLU

Table 3. Parameters for 2D velocity encoder, which is symmetric to
the 2D decoder.

Layer Kernel Stride #Filters Activation
convir (3,3,3) 2 64 LeakyReLU
convs (3,3,3) 2 64 LeakyReLU
convs (3,3,3) 2 128 LeakyReLU
convy (5,3,2) 1 128 LeakyReLU
convs (5,3,2) 1 128 LeakyReLU
conve (2,2,2) 1 64 LeakyReLU

Table 4. Parameters for 3D fluid encoder, which is symmetric to the
3D decoder.

Publication date: July 2022.

6 e Bo Ren, Xiaohan Ye, Zherong Pan, and Taiyuan Zhang

Network #Hidden Layers #Neuron Per Layer Activation

Actor 3 300 ReLU
Critic 3 300 ReLU
Parameter Encoder 3 200 ReLU

Table 5. Parameters for MLPs. Both the value network (represented
as a MLP) and the double-Q network (represented as 2 MLPs) are
part of our critic. Altogether, we use 3 separate MLPs of the same
architecture to represent the critic.

Our policy network system is trained with the off-policy rein-
forcement learning algorithm: Soft Actor-Critic (SAC) [Haarno-
ja et al. 2018]. The critic network implements policy evalua-
tion, which approximates the value function for the current
state. The actor network, on the other hand, implements
policy improvement, which obtains a better policy guided by
the gradient of the critic. Finally, an experience replay buffer
is used to collect history trajectories sampled with different
policies. For every iteration, data is sampled from the replay
buffer to alternately train the critic and the actor. Further,
the SAC algorithm combines the optimization objective with
a maximum entropy term to encourage exploration. This term
further improves the versatility of the trained policy and is
thus more favorable for our subsequent transfer process.

We extend the basic SAC method with the latent vari-
able z, and our optimization objective has been described
in Equation 2. Our critic network Q¢ (3, a, g, z) encodes the
value of action a under the state s, the task vector g, and
the simulator parameter z. Correspondingly, our actor is the
policy 7, (als, g, z). Here 8 and ¢ are parameters of the neural
network. Since SAC requires stochastic policy, we redefine
the action a be the sufficient statistics of a Gaussian dis-
tribution centered at 7, (als, g, z) with optimizable diagonal
variance. The critic network can be updated by the TD-A
technique [Sutton and Barto 2018] with the following critic-
loss:

Leritic = E (s¢,at,8¢41)~D [QB (Stvatzgv Z) - (T + ’YV(St+1,g, Z))]2)

z2~qg (2]st,at,8¢41)

3)
where V is target network used by the double-Q-learning
framework [Wang et al. 2016] and D is the replay buffer. The
actor-loss can be written as a KL divergence between the
policy and Q-value:

[DKL (Trcp("stv g,%2)

Lactor =B (s4.a4,5411)~D

2 (zlsg,ag,8¢41) Zo(st,9,2)

(4)
where the function Zy(s¢, g, z) is used to normalize the distri-
bution. We refer readers to [Haarnoja et al. 2018] for more
details. In the above loss functions, we assume that the simu-
lation environment parameter z is available from a parameter
encoder gy introduced in the next section.

4.3 Controller Transfer

We inform our controller of simulator changes via a 20-
dimensional latent variable z. These latent variables do not
have physical meaning and are not trained in a supervised
manner. Instead, we train a sub-network to infer z from
sampled trajectories. After sampling a complete trajectory

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

Mﬂ

(using the same simulator parameter) in the training stage,
we assume that z can be inferred from the transition tu-
ples b; & (st, at, st+1), which obeys a Gaussian distribution
go(z]b), where ¢4 is the sufficient statistics of the Gaussian
distribution inferred by the parameter encoder. However, the
transition tuples, b, are subject to severe noise, which is caused
by stochastic events of the fluid, including complex topologi-
cal changes, vortices, etc. Eventually, such noise hinders the
convergence of the sub-network training to a meaningful repre-
sentation of the simulator parameters. To alleviate this issue,
we choose to use only the first T' tuples of each trajectory
with a total length K as training inputs for this sub-network.
In these early-stage tuples, fluids and solids start to move
from their rest state where few stochastic events can happen.
As a result, these motions potentially show the inherent char-
acteristics of the simulator. In our experiments, we find this
small set of tuples is enough for the sub-network to learn a
good simulator parameter representation. We further limit
the size of the sub-network to infer z from a single tuple b
and represent the final distribution of z by combining the
estimation of all T" tuples as:

g5 (zlbrr) = [] 96 (2lbn)- (5)

We train ¢ and 6, ¢ in an interleaved manner. After updating
the actor and critic network, we update ¢ using the following
loss:

L(¢, b) = LKL + Lcritim (6)
where the following KL divergence implements the information
bottleneck and avoids overfitting:

Lk, = BDxw(gs(2[b))|Ip(2)). (7)

Here p(z) is the unit normal distribution. During the inference
stage, we use Equation 6 to continually update the latent
variable z. Specifically, for each newly-sampled trajectory,
we collect the first T tuples and apply Equation 6 to derive
q¢(z|b1:7). The multiplicative nature of this formula allows
more and more trajectories to be combined to get an increas-
ingly accurate z estimation. Ultimately, the z-conditioned
actor can be prepared to face a variety of new simulator
parameters, without the need of re-training.

4.4 Multi-Tasking

In this section, we refer to a “task” as a single target or a set
of similar sub-targets one want a solid object to achieve, for
example, “moving a ball to a position x” can be considered
as one task with all x in a small vicinity considered sub-tasks.
We introduce a task-representation scheme that is able to
handle multi-task control problems of this kind.

4.4.1 State Vector Mapping With Task Representation. When
different solid objects are targeted at (assigned to) different
tasks, Schaul et al. [2015] used a task vector g to encode
the object-to-target assignment, which is combined with s
to form a new state vector (s g) as input to the actor
network. However, this approach can lead to a combinatorial

Versatile Control of Fluid-Directed Solid Objects
Using Multi-Task Reinforcement Learning e 7

Fig. 4. Reconstruction of fluid velocity field by the autoencoder. (a) A velocity field extracted form a high-resolution simulation; (b) The same
field sampled at a 0.25x% resolution; (c) the velocity field reconstructed by the auto-encoder. By comparing (b,c), we see that the little vortices are

lost but the bulk motion is largely preserved.

explosion in the task set. For example, scooping up 2 good
balls out of other 8 bad ones can produce 45 possible task
vectors. It is hard to train a universal controller for all these
tasks via previous methods even with a considerable amount
of sampling and training efforts. In our approach as illustrated
in Figure 5, we assume that for each sub-task of a task, which
might belong to a given set of goals for the solid objects, the
composition of the goal set is fixed (e.g. there are exactly 2 out
of 10 balls to be moved, but which two can vary). Therefore, we
can pre-label each kind of sub-tasks, and rearrange the order
of solid objects’ state vectors, ¢, to reflect their sub-task labels
(e.g. the 2 balls to be moved always appear first in the state
vector). The order of good/bad balls in the state vector are not
important, since switching objects of the same shape/type
does not affect the simulator’s state. This treatment thus
significantly reduces the number of possible sub-tasks in the
task space G as well as the sample complexity during the
training stage (we still call ¢ € G as a task vector that
corresponds to a sub-task in the task space for compactness).
The network only needs to learn a small set of sub-tasks or
even a single task by making the representation invariant
to switching. At the beginning of each trajectory, the user
specifies the good/bad assignments g and we switch ball
ordering of the state vector to always put the good balls
in g first, eliminating g from the state vector. In practice,
this switching scheme is implemented as the first layer of our
policy network, which is intended to be a state transformation
function that is neither learnable nor differentiable.

4.4.2 Hindsight Experience Replay. Control problems involv-
ing multiple objects and tasks oftentimes have sparse re-
ward signals, where trajectories of positive rewards are rare
and hardly sampled. We adopt the Hindsight Experience Re-
play (HER) to increase the number of positive samples. This
method is based on the fact that we can treat failed cases
(negative samples) of one given task as positive samples of an-
other task by matching the goal of that task. In our approach,
when we observe a negative sample, where we want one object

(a) a q @i c2 .- g

(b) U q C1 CI1
Rearranged-Task I, II, - - -

Fig. 5. The difference between task representation method [Schaul
et al. 2015] (a) and our method (b). Schaul et al. [2015] does not
change the order of solid objects’ states but use a task vector g to
reflect the task information. Instead, we rearranges objects’ states by
the task to reduce the state space’s dimension.

to reach some goal position but end up having another object
reaching that same position, we denote such sample as a
potential sample. We then re-assign the task of the potential
sample, re-map the state vector using our task representation,
and insert the tuple into our replay buffer. Another case of a
potential sample is when one object achieves a wrong sub-task.
Although not all negative samples can be made positive, this
technique significantly improves the rate of positive samples
in the replay buffer, and increases the chances for sparse
reward signals to be felt. In our experiments, we found that
the performance of HER can be improved by considering an
entire trajectory, instead of a single timestep. Specifically, if
the cumulative reward of an entire trajectory increases after
re-assigning the task, we insert all the tuples of a trajectory
into the replay buffer. Otherwise, we discard the re-assigned
trajectory.

4.5 Overall Algorithm

Algorithm 1 outlines the training of a transferable controller
across a variety of simulators and tasks. For every iteration,
we first infer the environment-relevant variable z to represent
the current simulator, then we generate a trajectory with z-
conditioned actor 7., and insert collected data into the replay
buffer and update b. Then we try to change the current task to

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

8 e Bo Ren, Xiaohan Ye, Zherong Pan, and Taiyuan Zhang

ALGORITHM 1: Transferrable, Multi-Task Policy Training

A set of random simulators {7;}, task set G, learning rates

01,23
Initial parameters 6, ¢, o, replay buffer D < ()
for each iteration do
for each 7; do
Initialize b* < ()
Sample a sub-task g in G
>Sample Trajectory
for t=1,...,K do
Sample z ~ q4(z|b)
Sample a; ~ 7, (¢, 9,)
Advance simulator and add
D« DU{(st;at,5t41,9,2,71¢)}
b +— b' U {(St, at, St+1)}
>Implement HER
Sample a set of additional sub-tasks g’ in G
for each ¢’ do
if Zf{:l re(st, at, g,2) < Zf{:l ri(se,at, 9, 2)
then
for t=1,...,K do
D < DU{(st,a¢,8t4+1,9 ,2,75)}
>Implement SAC
for sampled batch from D do
¢=¢— a1 AV (Lc'ritic + LKL)
0=0—oa2 Vo Leritic
p=p—a3 Ve Lactor

find new trajectories whose total reward is higher for a multi-
task problem. If any better trajectories are found, we insert
them into the replay buffer too (essentially implementing
HER). All networks are updated after data collection. For
each sampled data batch from the replay buffer, we use the
critic-loss (Equation 3) to update the Q-value network, the
actor-loss (Equation 4) to update the policy network, and
the combined KL- and critic-loss (Equation 6) to update the
parameter encoder.

5 EXPERIMENTS & EVALUATION

We evaluate the performance of our method on a set of chal-
lenging 2D and 3D benchmarks. All the examples are trained
in low-resolution simulators and tested in high-resolution ones
(Table 2). A typical 2D-controller (resp. 3D-controller) train-
ing takes about 35 (resp. 70) hours with a Nvidia RTX2080Ti
GPU. It takes millions of time steps to train a 3D controller
in our benchmarks. Without using our approach, it would
take several months to train the controller directly in the
resolution of 400 x 240 x 160, which is impractical. We imple-
ment the simulators with TaiChi programming language [Hu
et al. 2019b]. We use two types of physical solvers, MPM and
SPH. The MPM (resp. SPH) solver is implemented by MLS-
MPM method [Hu et al. 2018] (resp. WCSPH [Becker and
Teschner 2007]). Our training consists of two passes, i.e. first a
pre-training pass of the autoencoder for fluid-velocity field en-
coding, then the main training pass. During the pre-training
of the autoencoder, we use Liecon = Eu [||u — E(D(u))HQ}
and a dataset of 80000 velocity field samples to optimize

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

the velocity encoder for both 2D and 3D control tasks with
uniform random actions. Here we denote E(-) as the encoder
function and D(-) as the decoder function. It is known that
the autoencoder can be made over-fitting robust if it outputs
a feature distribution instead of a feature vector, which is
known as variational autoencoder (VAE). However, we found
that VAE requires more learnable parameters to represent
both the mean and variance of a distribution, which is not
suitable for our small dataset size, so we choose to use plain
autoencoder. A variety of simulator parameters are consid-
ered, including resolution, gravitational coefficient, type of
solver, Young’s modulus in the MPM solver, viscosity and
vorticity in the SPH solver. Figure 4 shows a reconstructed
velocity field by the learnt autoencoder network, which largely
preserves the down-sampled bulk motion.

We consider two kinds of controllers, spoons and water
spouts, both of which can be considered boundary conditions
to the fluid simulator, while the large bulks of fluid bodies
move according to the true dynamics. In 2D environments, we
define g = (T w) for each controller. All the controls are
realized by applying force and torques to ¢, and we denote § =
(T w) and § = (T w) as its velocity and acceleration.
For water spouts in 3D environments, we add constraints
to limit their motions within the horizontal X-Z plane and
rotations to the vertical X-Y plane. As a result, ¢ still has
three components, i.e. ¢ = (x xz wxy), which takes
the same form as that in 2D. Finally, we add a regulation
to the control action, suppressing excessive control signals
by introducing thresholds to ¢, ¢, ¢ so that ¢ € By, ¢ € By
and ¢ € B;. We will use subscript (resp. superscript) in the
equations to index controlled (resp. uncontrolled) objects. We
will summarize our training parameters and scene setting
parameters in Appendix A. In all the following examples,
at the inference stage, for each scene setting, our learned
meta-RL network first samples 2 trajectories to update the z
variable as described in Section 4.3.

5.1 Solid Scooping from Water Tank

Our first, 2D benchmark is inspired by prior robotic re-
search [Pan and Manocha 2017b; Schenck and Fox 2017]
on liquid transfer. We formulate a more challenging task that
requires extreme precision, where five small balls are placed
in water and a spoon is placed above the water surface at first,
and the goal is for the controlled spoon to scoop up multiple
solid balls as fast as possible, as illustrated in Figure 6. This is
achieved by limiting the trajectory length and designing a re-
ward function that continually produces positive values when
a ball falls inside the spoon. There can be several variants
of such precision manipulation tasks. To start with, we have
one spoon initially outside the water and five balls placed
statically in water and our goal is to scoop up as many balls
as possible. We use the following reward function to model
this task:

7"(87 CL) :Usz(xspoon - x:poon)+

I (”xspoon -

x:;mon” > do) [wi?f(ijspoon) + wwf(wspoon)]

Versatile Control of Fluid-Directed Solid Objects
Using Multi-Task Reinforcement Learning e 9

Training Method Solver(Stage) Resolution #Particles Gravity Young’s Module Density Ratio Spoon Shape Avg. #Balls Scooped
Meta-RL MLS-MPM 512 x 512 460.8K 10 ~ 70 500 ~ 1000 0.8~ 1.6 Parallelogram 1.72
Standard RL With Random Simulators MLS-MPM 512 x 512 460.8K 10 ~ 70 500 ~ 1000 0.8~ 1.6 Parallelogram 1.13
Standard RL With Fixed Simulator MLS-MPM 512 x 512 460.8K 10 ~ 70 500 ~ 1000 0.8~ 1.6 Parallelogram 1.17
Manually Design MLS-MPM 512 x 512 460.8K 10 ~ 70 500 ~ 1000 0.8~ 1.6 Parallelogram 0.65
Meta-RL WCSPH \ 54K 30 ~ 50 \ 0.5~ 1.0 Parallelogram 1.47
Standard RL With Random Simulators WCSPH \ 54K 30 ~ 50 \ 0.5~ 1.0 Parallelogram 0.85
Standard RL With Fixed Simulators WCSPH \ 54K 30 ~ 50 \ 0.5~ 1.0 Parallelogram 0.73
Manually Design WCSPH \ 54K 30 ~ 50 \ 0.5~ 1.0 Parallelogram 0.68

Table 6. We compare the online performance of a controller trained using meta-RL, standard RL and manually designed policy. To this end, two
controllers are trained using meta-RL and standard RL with random MPM simulators, where we randomly sample parameters to generate different
simulators in the training stage, including the resolution, gravity, fluid-to-solid density, Young's module, and we change the shapes of the spoon
to be smoothly deforming between a series of parallelograms. The other two controllers are trained using standard RL with a fix simulator or
manually designed. During the inference stage, we randomly choose 20 different simulators whose parameter scopes are shown in this table, and
profile the average number of balls scooped within 3 trials using each unseen simulator. Our meta-RL-based approach significantly outperforms

manually designed policies or those trained via the standard RL in transferring tasks.

Fig. 6. lllustration of the solid scooping benchmark, where the goal is
for the spoon to pick up as many balls as possible. We demonstrate
three trials of the same trained network on different spoon shapes in
each row.

f(o) £n”exp(—| o |1?), (8)
where n is the number of balls that end up inside the spoon,
Z(e) is the indicator function, and 3,,0n is the target position.
The terms f(Zspoon) and f(wspoon) Will encourage the spoon
to hold a stationary pose and keep the scooped balls from
spilling when the spoon center is within a distance dy from
the target position.

We use this benchmark to demonstrate and analyze the
ability of simulator transfer. During the training phase, we
generate sample trajectories from a series of low-resolution
MPM simulations with randomly-set physical parameters,

ACM Trans. Graph., Vol. 1, No. 1, Article .

8000
— Parameter Encoder l)
7000 | — Without Parameter Encoder

T
R T
AR TR

o0
o 200 400 800 1000 o 200

— Parameter Encoder
— Without Parameter Encoder

®
£ 4000 iiag

3000

2000

400 600 800 1000
Episode

(b) Solid Balancing

o
Episode

(a) Solid Scooping

Fig. 7. RL optimizer suffers from a slow progress (a) or stalling (b)
without meta-learning and parameter encoder when using different
simulators in training, which is because the policy gradients from
different simulators may cancel each other. Using our training method,
the optimizer quickly distinguishes gradients by their simulator param-
eters and distill useful information from these gradients to improve
cumulative rewards.

Fig. 8. We illustrate a typical failure case of manually designed baseline
controller (a) as compared with our policy (b) in the targeted scooping
task.

including gravity, fluid density, Young’s modulus, resolution-
s (128 x 128 ~ 192 x 192), and spoon shapes. Figure 7(a)
demonstrates the reward change during training with/without
our parameter encoder. Without the help of the parameter
encoder (i.e. using standard SAC), the optimizer exhibits
a low training efficiency due to the conflicting policy gradi-
ents introduced by various simulator environments. On the

Publication date: July 2022.

10 e Bo Ren, Xiaohan Ye, Zherong Pan, and Taiyuan Zhang

contrary, our meta-learning scheme allows the policy to distin-
guish the gradients by their simulators and quickly improve
the cumulative rewards. We also perform another ablation
study comparing our method with standard SAC, where the
standard SAC method is used to train the policy with a
fixed set of physical parameters. The policy is then applied to
other simulation environments. In Table 6, we run standard
SAC with both random and fixed physical parameters during
training, and compare their results with our meta-RL-based
method. All policy networks are trained under a low resolu-
tion, sampled uniformly between 128x128 and 192x192 (the
fixed setting is only trained under 128 x128), and tested at a
high resolution of 512x512. Other parameters vary within the
same range in both training and testing stages. The meta-RL
based method largely outperforms the fine-tuned standard RL
ones. As expected, using random simulators with standard
RL cannot help generalizing the policy, echoing the analysis
in Figure 7.

To highlight the complexity of the multi-solid scooping task,
we further conduct an ablation study and compare our policy
with a manually designed baseline controller. Many prior
works in robotics such as [Pan and Manocha 2017b] manually
design parametric scooping actions for liquid transfer tasks,
which involve moving the scoop towards the object and then
moving back up. As illustrated in Figure 8, we evaluate both
policies in the scooping problems whose goals are to get as
many balls as possible. We randomly generate 20 scooping
cases with different sets of environmental parameters and
evaluate three trials for each case. For the final scooped
number of ball, our policy achieves an average number of
1.72, while the baseline controller only achieves 0.65. Detailed
parameter settings can be found in Table 6. One possible
reason behind this phenomena is that, in contrast to single-
object tasks, the strict incompressibility makes the motions
of different balls strongly coupled in a complex way, and the
fluid information is essential to success.

We also test the above trained controllers on a WCSPH
simulator (with ~ 50K particles), which is another unseen
simulator during the training stage. At test time, a random
fluid-solid density ratio is chosen, and we report the statistical
results, including physical parameters setting and average
scooped number of balls in Table 6. The results show that
our approach successfully transfers the learned policy to new
simulation environments.

5.2 Targeted Solid Scooping

Our second variant of the ball-scooping task requires a higher
level of manipulating precision. Instead of scooping up balls
without discrimination, our goal in this case is to scoop the
“good ones” (in red) but leave behind the “bad ones” (in black).
In addition to being precise, we also require the controller to
handle changing good ball assignments online, leading to a
multi-task setting. Settings for this benchmark are the same
as our first 2D benchmark, but in the beginning, the user can
arbitrarily specify a certain number (2 for our benchmark)
of balls as the “good ones”. To model this task, we use the

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

T T T T
—— HER + Task Representation
4000 [-—— Task Representation

3000 : E‘::dard A/V\)h‘k'/\w/v‘

M

2000 /\'\/QJ/
i

1000 ok

0 250 500 750 1000 1250 1500 1750 2000
Episode

Reward

0

Fig. 9. A comparison highlighting the effect of HER and our task
representation techniques in the targeted solid scooping task using 8
black balls. This is a challenging multi-task setting with sparse reward
signals. Our results show that both HER and task representation are
indispensable for successful training.

same reward signal as Equation 8 except for the function f(e)
replaced by the following function:

ng 2
f(®) =wright ZI (ml in spoon = z'is good)] exp(—|l o ||2)7
i=1
ng 2
Wwrong ZI (xz in spoon # zlis good):| exp(—|l o ||2)
i=1

)

In this benchmark, as illustrate in Figure 12, we apply both
the HER and task representation techniques as described
in Section 4.4.1. We evaluate the performance of our multi-
task learning technique in this benchmark with two target
red balls and a number of bad black balls. We note that
even with a small number of balls (e.g., using 4 bad balls in
Figure 12(a)), there is already a 15-sized set of object-task
combinations, and the complexity rapidly grows when the
number of bad ball increases (e.g., in Figure 12(b), the 8 bad
ball case has a 45-sized set of combinations). In such tasks
the reward signal is extremely sparse. We compare the results
with/without HER and our task representation technique
in Figure 9. As expected, our HER and task representation
technique significantly improves the optimized cumulative
reward. In Table 7, we profiled the rate of successfully and
accurately picking up target balls with different number of
bad balls. The task difficulty also increases rapidly when the
number of possible object-task combination reaches a certain
level.

Number of Bad Balls 4 6 8 10
83 65 60 10

Table 7. Success rate of the targeted ball scooping task when there
are 4,6,8, or 10 bad balls and 2 good balls. We consider a trial
successful when the good balls are all scooped without any bad balls
in the spoon. We find that the task difficulty increases rapidly when
the number of possible object-task combinations reaches a certain
level.

Success Rate

5.3 3D Multi-Solid Balancing

Our second, 3D benchmark is inspired by the 2D ball balanc-
ing benchmark [Ma et al. 2018], but our version is much more
complex in that we use two water spouts to control three
solid balls to keep balanced in a 3D domain. Since the number
of controlled objects is more than the number of controllers,
our controller has to learn to coordinate between different
targets both temporally and spatially. We consider a ball
successfully balanced when it is confined in a cuboid region
without hitting the boundary of that region (as illustrated in
Figure 10), which is modelled by the following reward signal:

< i i |2 i
r(s,a) ZZ waz exp(— Hﬂfban — Thall ‘) + wa exp(— H%an
i=1
Whit ZI (:vliau hits boundary) , (10)
i=1

where the x,;-related term penalizes position mismatch and
&1 n-related term encourages static balances. During the train-
ing stage, once an object touches the boundary of the cuboid
region, it will be bounced back. We add an indicator of how
many balls hit the boundary at the current timestep, which is
multiplied by a non-positive coefficient as an additional penal-
ty. This bouncing boundary of the cuboid region is only used
to limit the range of ball motions during the training stage, so
as to reduce the training complexity. We remove the boundary
during the test time and our controller can empirically always
confine the balls within given cuboid regions.

A 3D control task with such a huge state space as fluid
simulators requires a gazillion of samples. However, with our
off-policy RL and meta-RL enabling low-resolution training,
we are able to finish the policy optimization within 60 hours.
Figure 7(b) illustrates the training curve with or without the
parameter encoder.

We find the solid balancing task sensitive to simulation
environmental parameters. Because the controller must keep
the solid in a dynamic force equilibrium, any under- or over-
estimation of forces can result in failure. We utilize this sensi-
tivity to highlight the necessity of meta-RL. Note Figure 7 has
already shown that the standard RL using random physical
parameters in training is not an effective way of policy gener-
alization. So in Figure 11, we compare our policy against a
standard SAC baseline policy, where both policies are trained
at a low resolution, with the meta-RL network using random
physical parameters and the standard RL using fixed physical

]-

Versatile Control of Fluid-Directed Solid Objects
Using Multi-Task Reinforcement Learning e 11

Fig. 10. llustration of the 3D multi-solid balancing benchmark. The
task is to confine the balls in a given cuboid region (illustrated by the
wire frame). We successively balance the balls with two water spouts
below using our trained network.

Fig. 11. We illustrate a typical failure case of policy without meta-RL
(a) as compared with our policy (b) in the 3D multi-solid balancing
task.

parameters. The total trajectory numbers used in the training
stages are the same for the two approaches. We then test how
well the two trained policies transfer to a higher resolution
by evaluating both policies in 20 trajectories with different
resolutions. We find that our policy can keep the balls bal-
anced for a longer time period then the SAC baseline at a
higher resolution, as summarized in Table 8. The baseline
approach performs better at its training resolution because
it effectively observes far more trajectories at that resolution
during training. However, the baseline quickly degrades facing
unseen higher resolutions. In comparison, our meta-RL based
policy stably applies to these unseen environments.

Resolution ’ | o N
Training Method 80 x 48 x 32 120 x 72 x 48 400 x 240 x 160

Meta-RL 348 357 353
Standard SAC 456 360 216

Table 8. We profile the average number of frames in which the policy
can keep the balls balanced. We compare two policies, one trained
using meta-RL with random parameters (with random resolutions
ranging from 80 x 48 x 32 to 120 x 72 x 48), and the other one
is trained using standard RL with fixed parameters (with a fixed
resolution at 80 X 48 x 32). The performance of meta-RL approach
stays approximately the same when scaled to unseen high-resolution
environments.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

12 e Bo Ren, Xiaohan Ye, Zherong Pan, and Taiyuan Zhang

Fig. 12. A controller test of the targeted solid scooping task at a resolution of 512 x 512. Our controller scoops all the red balls and keeps out the
black ones. (a): 2 target red balls among 4 black balls. (b): 2 target red balls among 8 black balls.

Fig. 13. lllustrations of multi-solid juggling benchmark. We initialize the three balls at different positions, the positions of two adjacent balls are
then exchanged according to the user’s online instructions: (a) initial positions; (b) switching positions of yellow and red balls; (c) switching
positions of red and green balls; (d) switching positions of yellow and green balls.

5.4 3D Multi-Solid Juggling

Our third, 3D benchmarks is a multi-task, dynamic extension
of the second benchmark, where we use two water spouts to
control three solid balls to transpose horizontally in air, while
keeping them from falling on the ground. During each ma-
nipulation, three small balls are initialized in air from left to
right at their balancing target positions, and the user can arbi-
trarily assign two balls with target positions to be exchanged,
while the third ball should stay near its original position as
much as possible. This is also a multi-task control problem,
as the transposed balls should be specified by the users on-
line. We then divide the balls into three categories based on
the relations between ball position and its target position:
moving left, moving right and standing still, corresponding
to expected horizontal velocities [if5,]) € {—0.5,0.5,0}, re-
spectively. The target velocities are kept unchanged within a
user-specified number of time-steps before re-deciding the ball
categories. We use the following reward function to model
this task:

r(s,a) =wy Zexp(— ||[a:f)au]J_ — [a:f;ll]l||2)+
i=1

ng . i 2
Wi Zexp(— H [ﬂbllaall] = [ii:i“] I H)=
i=1

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

Ns
Whit ZI (m{',au hits scene boundary) , (11)

=1

where [o]”’ | represents horizontal and vertical components of a
vector. We demonstrate this benchmark in Figure 13.

5.5 Multi-Solid Music Player

Our last benchmark is the 3D extension to the music-player example
of [Ma et al. 2018], where we set up a 3D music player that uses
two water spouts to drive three balls in a cuboid scene. The balls
are controlled to hit seven note keys (Do Re Mi Fa Sol La Ti,
aligned along the x-axis) according to the input music script. For
each manipulation, the user specifies an arbitrary note sequence,
and the controlled water spout will push the balls to hit the notes
in turn at a given frequency (e.g. quartertones). The complexity of
this benchmark lies in that the controller must drive a proper ball
and move it to meet the critical timing requirements according to
the online-specified music script, where faraway note keys may be
sequentially played.

We boil the task down to a combination of two simpler tasks. On
observing the next key note in the script, we define one task to drive
a proper target ball to hit the key note and another task to push
the other two balls from the target ball along the x- and z-axes as
far as possible. The purpose of this decomposition is twofold. First,
we avoid collisions between balls and prevent balls from hitting a
wrong key note. Second, by disseminating the three balls, it would

Fig. 14. lllustration of the 3D music player benchmark. Two spouts
control three balls by jetting water in a 3D space, driving them to hit
the key notes above according to the input music script. A strainer
mesh is set to catch the dropped balls without affecting the flow of
water. Our learned controller can play multiple music pieces completely
unseen after the training stage.

be easier to find the proper ball with suitable distance and angle
to hit the next key note, wherever it is.

We choose the next proper ball in the following way. First, we
define a neighborhood around the next key note using a threshold
of distance along the x-axis. If there are any balls within this
neighborhood, we choose the one with lowest altitude as the target
ball. Otherwise, we choose the ball with the minimal x-distance
to the next key note. In practice, we further consider the balls’
moving direction, and use the predicted position of a ball after a
short time period (5 time steps) for the ball-selection. Our reward
function thus consists of the following three parts:

'I‘(S, a) =Tover + Thit + Tsep (12)
s
Tsep = — ZI (¢ is not target) [we ||z}, — Zhan]
1=1
Ns
Tover 2 — Wover ZI (¢ is target)
i=1

T (2}, hits key note) Z(|t — t*| > At),

where we set a hitting time range of At. Each note in the script
has a target time denoted as t* and each target ball must hit the
correct key note within [¢* — At,t* + At]. Failure to meet the
timing requirement would receive a penalty of wover. If the timing
requirement is met, we use the following r;; to reward a more
accurate hit:

Thit =WrightZ (Thay hits right key note) —

Versatile Control of Fluid-Directed Solid Objects
Using Multi-Task Reinforcement Learning e 13

WwrongL ("'E%)all hits wrong key note) lehan — Thanll—
welt —t*|. (ith ball is the target ball)

Here we grant a constant, positive reward for a correct hit, while
we scale the penalty by distance from the target key note for a
wrong hit. The last term encourages a more accurate timing.

In the training stage of [Ma et al. 2018], they first randomly
sample a sequence of notes and then keep them constant for the
controller to learn a proper control policy for the sequence. This
will need a lot of different random sample sequences for a universal
policy network to be trained. When the music script is specified
online, the performance of [Ma et al. 2018] drops significantly in
our 3D music player setting due to their bad generalization ability.
On the contrary, during the training stage, once a key note is
hit, we set randomly the next target key note for the controller.
Adopting our task representation and the HER techniques, our
network achieves good performance after 74h of training. Once
such a universal controller is trained, we can use it to play literally
any music script. In our experiments, the average correct hit rate
is above 70%, and it can reach 100% in some simple-music playing
trials. Most incorrect hits involve miss-hit onto adjacent notes or
early/late hits near the time threshold. We provide two pieces of
melodies played by our controller in the supplemental video.

6 CONCLUSIONS & LIMITATIONS

We present a learning-based method to control both 2D and 3D
fluid-directed multi-body systems. Our controller is represented
as deep neural networks and trained using an efficient off-policy
reinforcement learning algorithm. Our method features meta-RL
framework allowing the controller to transfer to different simulators
with a small amount of extra samples. Furthermore, high-resolution
controls can be achieved with fast training on low-resolution simula-
tors. Finally, a compact task representation is designed for solving
multiple control tasks without the combinatorial explosion of the
task space.

Fig. 15. We illustrate two mistakes made by our policy: hitting the
wrong note key (a) and scooping the wrong ball (b).

One limitation of our meta-RL framework is the possibility
of failure, especially when a new environment differs too much
from training-stage environments. Due to the random nature of
the RL algorithm and the complexity of fluid-solid interactions,
a trained network does not guarantee success in each single run,
even when the training converges to a high average reward, as
shown in Figure 15(a) where the ball can hit a nearby wrong
key during playing. The limited-length trajectory may also result
in failure in certain cases as illustrated in Figure 15(b), where
the spoon occasionally scoops a wrong ball early on but fails to
shake it out within the period. Another limitation is that many
hyper-parameters of RL training are still manually chosen, which
significantly relies on trial and error. We have also found that

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

14 e Bo Ren, Xiaohan Ye, Zherong Pan, and Taiyuan Zhang

the learned policy is relatively sensitive to some parameters (e.g.,
number of trajectory samples, learning rate, and hidden layer size).
The task complexity also affects the performance of the policy
network. Taking the music-player for example, if we would like to
further hold the balls in 3D space, preventing them from falling on
the mesh, then failure cases significantly increase, where the balls
cannot hit the right key at the right time. Currently these two tasks
cannot be well-accomplished simultaneously using a small number
of fluid spouts. Improving the success rate in such complicated
tasks will be the focus of our future research.

A ARCHITECTURE PARAMETERS

In Table 9 and Table 10, we list all the parameters used in our
benchmarks. During training, we sample from 20 simulators with
different parameters for 2D benchmarks, and 10 simulators with
different parameters for 3D benchmarks. We further list various pa-
rameters used by the training algorithm, which include the timestep
size, number of timesteps per trajectory, number of trajectories
per iteration, number of training steps per iteration.

Parameters Value
Reward Coefficients (wz, wg, ww) 2,0.25,0.25
Target Position Distance (dg) 0.2
Target Solid Scooping Coefficient (wright, Wwrong) 1,04
Position Threshold (Bd,,iyn; Bdmaz) [0,0,-3],[1,1,3]

Velocity Threshold (Bgmin, Bgmaz)
Acceleration Threshold (Bgmin, Bimaz)

[4,-4,-12],[4,4,12]
[-50,—50,-150] s [50,50,150]

Timestep Size 0.012(s)
Number of Training Steps per Iteration 2000
Number of Timesteps per Trajectory 150
Number of Trajectories per Iteration 15

Table 9. Parameters for 2D benchmarks.

Thresholds for Controllers Value
[0.2,0.1,1.0],[1.4,0.54,2.2]
[-20,-10,-20],[20,10,20]
[-1500,-1000,-1500],[1500,1000,1500]

Position Threshold (Bd,,in: Bmaz)
Velocity Threshold (Bdmin, Bmaaz)
Acceleration Threshold (Bémin, Bdmax)

Multi-Solid Balancing Value
Reward Coefficients (wz,ws, Whit) 2.5,1.5,25
Timestep Size 0.004(s)
Number of Timesteps per Trajectory 1000
Number of Trajectories per Iteration 1
Number of Training Steps per Iteration 1000
Multi-Solid Juggling Value
reward coefficients (wq, W, Whit) 1.5,3,25
Timestep Size 0.004(s)
velocity-keeping time-steps 200
Number of Timesteps per Trajectory 200
Number of Trajectories per Iteration 8
Number of Training Steps per Iteration 1000
Music Player Parameters Value
Reward Coefficients (wz,wover, Wright Wt, Wwrong) 0.05,10,35,0.6,15
Timestep Size 0.006(s)
Number of Timesteps per Trajectory 1000
Number of Trajectories per Iteration 2
Number of Training Steps per Iteration 1500

Table 10. Parameters for 3D benchmarks.

ACKNOWLEDGMENTS

This work is supported by the Open Project Program of State Key
Laboratory of Virtual Reality Technology and Systems, Beihang
University (No.VRLAB2021A04).

REFERENCES

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider,
Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, OpenAl
Pieter Abbeel, and Wojciech Zaremba. 2017. Hindsight Experience

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

Replay. In Advances in Neural Information Processing Systems,
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (Eds.), Vol. 30. Curran Associates, Inc.,
Long Beach, California, USA. https://proceedings.neurips.cc/paper/
2017 /file/453fadbd8ala3af50a9df4df899537b5- Paper.pdf

Markus Becker and Matthias Teschner. 2007. Weakly Compressible
SPH for Free Surface Flows. In Proceedings of the 2007 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(San Diego, California) (SCA ’07). Eurographics Association, Goslar,
DEU, 209217.

Kevin Bergamin, Simon Clavet, Daniel Holden, and James Richard
Forbes. 2019. DReCon: Data-Driven Responsive Control of Physics-
Based Characters. ACM Trans. Graph. 38, 6, Article 206 (nov 2019),
11 pages. https://doi.org/10.1145/3355089.3356536

Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian
Schumacher, Robert Sumner, and Markus Gross. 2012. Deformable
Objects Alivel ACM Trans. Graph. 31, 4, Article 69 (jul 2012),
9 pages. https://doi.org/10.1145/2185520.2185565

Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever,
and Pieter Abbeel. 2016. RL?: Fast Reinforcement Learning via
Slow Reinforcement Learning. arXiv:1611.02779 [cs.Al]

Raanan Fattal and Dani Lischinski. 2004. Target-Driven Smoke An-
imation. ACM Trans. Graph. 23, 3 (Aug. 2004), 441448. https:
//doi.org/10.1145/1015706.1015743

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic
Meta-Learning for Fast Adaptation of Deep Networks. In Proceed-
ings of the 34th International Conference on Machine Learning
(Proceedings of Machine Learning Research, Vol. 70), Doina Pre-
cup and Yee Whye Teh (Eds.). PMLR, Sydney, Australia, 1126-1135.
https://proceedings.mlr.press/v70/finnl7a.html

Abhishek Gupta, Russell Mendonca, YuXuan Liu, Pieter Abbeel, and
Sergey Levine. 2018. Meta-Reinforcement Learning of Structured
Exploration Strategies. In Proceedings of the 32nd International
Conference on Neural Information Processing Systems (Montréal,
Canada) (NIPS’18). Curran Associates Inc., Red Hook, NY, USA,
53075316.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
2018. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor. In Proceedings of
the 85th International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research, Vol. 80), Jennifer Dy
and Andreas Krause (Eds.). PMLR, Stockholm, Sweden, 1861-1870.
https://proceedings.mlr.press/v80/haarnojal8b.html

Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Rein-
forcement Learning with Double Q-Learning. In Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence (Phoenix,
Arizona) (AAAI’16). AAAI Press, Phoenix, Arizona USA, 20942100.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Prad-
hana, and Chenfanfu Jiang. 2018. A moving least squares material
point method with displacement discontinuity and two-way rigid
body coupling. ACM Transactions on Graphics (TOG) 37, 4 (2018),
1-14.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley,
and Frédo Durand. 2019a. Taichi: a language for high-performance
computation on spatially sparse data structures. ACM Transactions
on Graphics (TOG) 38, 6 (2019), 201.

Yuanming Hu, Tzu-Mao Li, Luke Anderson, Jonathan Ragan-Kelley,
and Frédo Durand. 2019b. Taichi: a language for high-performance
computation on spatially sparse data structures. ACM Transactions
on Graphics (TOG) 38, 6 (2019), 1-16.

Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B Tenenbaum,
William T Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik.
2019c. Chainqueen: A real-time differentiable physical simulator
for soft robotics. In 2019 International conference on robotics and
automation (ICRA). IEEE, IEEE, Montreal, Canada, 6265-6271.

Byungsoo Kim, Vinicius C. Azevedo, Markus Gross, and Barbara
Solenthaler. 2019. Transport-Based Neural Style Transfer for Smoke
Simulations. ACM Trans. Graph. 38, 6, Article 188 (nov 2019),
11 pages. https://doi.org/10.1145/3355089.3356560

Yunzhu Li, Toru Lin, Kexin Yi, Daniel Bear, Daniel Yamins, Jia-
jun Wu, Joshua Tenenbaum, and Antonio Torralba. 2020. Vi-
sual Grounding of Learned Physical Models. In Proceedings of
the 87th International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research, Vol. 119), Hal Daum
IIT and Aarti Singh (Eds.). PMLR, Vienna, Austria, 5927-5936.
https://proceedings.mlr.press/v119/1i20j.html

https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/453fadbd8a1a3af50a9df4df899537b5-Paper.pdf
https://doi.org/10.1145/3355089.3356536
https://doi.org/10.1145/2185520.2185565
https://arxiv.org/abs/1611.02779
https://doi.org/10.1145/1015706.1015743
https://doi.org/10.1145/1015706.1015743
https://proceedings.mlr.press/v70/finn17a.html
https://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.1145/3355089.3356560
https://proceedings.mlr.press/v119/li20j.html

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Anto-
nio Torralba. 2019. Learning Particle Dynamics for Manipulating
Rigid Bodies, Deformable Objects, and Fluids. In ICLR. Open Pub-
lishing, New Orleans, LA, USA.

Pingchuan Ma, Yunsheng Tian, Zherong Pan, Bo Ren, and Dinesh
Manocha. 2018. Fluid directed rigid body control using deep rein-
forcement learning. ACM Transactions on Graphics (TOG) 37, 4
(2018), 1-11.

Antoine McNamara, Adrien Treuille, Zoran Popovié, and Jos Stam.
2004. Fluid control using the adjoint method. ACM Transactions
On Graphics (TOG) 23, 3 (2004), 449-456.

Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel,
Sergey Levine, and Chelsea Finn. 2019. Guided Meta-Policy
Search. In Advances in Neural Information Processing System-
s, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Associates, Inc.,
Vancouver, Canada. https://proceedings.neurips.cc/paper/2019/
file/d324a0cc02881779dcdad4a675fdcaaa- Paper.pdf

Sehee Min, Jungdam Won, Seunghwan Lee, Jungnam Park, and Jehee
Lee. 2019. SoftCon: Simulation and Control of Soft-Bodied Animals
with Biomimetic Actuators. ACM Trans. Graph. 38, 6, Article 208
(nov 2019), 12 pages. https://doi.org/10.1145/3355089.3356497

Michael B. Nielsen and Robert Bridson. 2011. Guide Shapes for High
Resolution Naturalistic Liquid Simulation. ACM Trans. Graph. 30,
4, Article 83 (jul 2011), 8 pages. https://doi.org/10.1145/2010324.
1964978

Zherong Pan and Dinesh Manocha. 2017a. Efficient solver for spacetime
control of smoke. ACM Transactions on Graphics (TOG) 36, 4
(2017), 1.

Zherong Pan and Dinesh Manocha. 2017b. Feedback motion planning
for liquid pouring using supervised learning. In 2017 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS).
IEEE, Vancouver, BC, Canada, 1252-1259. https://doi.org/10.
1109/ITR0OS.2017.8202300

Zherong Pan and Dinesh Manocha. 2018a. Active Animations of Re-
duced Deformable Models with Environment Interactions. ACM
Trans. Graph. 37, 3, Article 36 (aug 2018), 17 pages. https:
//doi.org/10.1145/3197565

Zherong Pan and Dinesh Manocha. 2018b. Active animations of re-
duced deformable models with environment interactions. ACM
Transactions on Graphics (TOG) 37, 3 (2018), 1-17.

Zherong Pan, Bo Ren, and Dinesh Manocha. 2019. GPU-Based Contact-
Aware Trajectory Optimization Using a Smooth Force Model. In
Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics
Symposium on Computer Animation (Los Angeles, California) (iS-
CA ’19). Association for Computing Machinery, New York, NY,
USA, Article 4, 12 pages. https://doi.org/10.1145/3309486.3340246

Soohwan Park, Hoseok Ryu, Seyoung Lee, Sunmin Lee, and Jehee
Lee. 2019. Learning Predict-and-Simulate Policies from Unorganized
Human Motion Data. ACM Trans. Graph. 38, 6, Article 205 (nov
2019), 11 pages. https://doi.org/10.1145/3355089.3356501

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne.
2018. Deepmimic: Example-guided deep reinforcement learning of
physics-based character skills. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 1-14.

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne.
2017. Deeploco: Dynamic locomotion skills using hierarchical deep
reinforcement learning. ACM Transactions on Graphics (TOG) 36,
4 (2017), 1-13.

Xue Bin Peng, Ze Ma, Pieter Abbeel, Sergey Levine, and Angjoo
Kanazawa. 2021. AMP: Adversarial Motion Priors for Stylized
Physics-Based Character Control. ACM Trans. Graph. 40, 4, Article
144 (jul 2021), 20 pages. https://doi.org/10.1145/3450626.3459670

Jovan Popovié, Steven M. Seitz, and Michael Erdmann. 2003. Motion
Sketching for Control of Rigid-Body Simulations. ACM Trans.
Graph. 22, 4 (Oct. 2003), 10341054. https://doi.org/10.1145/944020.
944025

Michael Posa, Cecilia Cantu, and Russ Tedrake. 2014. A direct
method for trajectory optimization of rigid bodies through con-
tact. The International Journal of Robotics Research 33, 1
(2014), 69-81. https://doi.org/10.1177/0278364913506757 arX-
iv:https://doi.org/10.1177/0278364913506757

Lukas Prantl, Boris Bonev, and Nils Thuerey. 2019. Generating Lig-
uid Simulations with Deformation-aware Neural Networks. arX-
iv:1704.07854 [cs.GR]

Versatile Control of Fluid-Directed Solid Objects
Using Multi-Task Reinforcement Learning e 15

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre
Quillen. 2019. Efficient Off-Policy Meta-Reinforcement Learning
via Probabilistic Context Variables. In Proceedings of the 36th
International Conference on Machine Learning (Proceedings of
Machine Learning Research, Vol. 97), Kamalika Chaudhuri and
Ruslan Salakhutdinov (Eds.). PMLR, Long Beach, California, USA,
5331-5340. https://proceedings.mlr.press/v97/rakellyl9a.html

Karthik Raveendran, Nils Thuerey, Chris Wojtan, and Greg Turk.
2012. Controlling Liquids Using Meshes. In Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Anima-
tion (Lausanne, Switzerland) (SCA ’12). Eurographics Association,
Goslar, DEU, 255264.

Karthik Raveendran, Chris Wojtan, Nils Thuerey, and Greg Turk. 2014.
Blending Liquids. ACM Trans. Graph. 33, 4, Article 137 (July
2014), 10 pages. https://doi.org/10.1145/2601097.2601126

Syuhei Sato, Yoshinori Dobashi, Theodore Kim, and Tomoyuki Nishita.
2018. Example-based turbulence style transfer. ACM Transactions
on Graphics (TOG) 37, 4 (2018), 1-9.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. 2015.
Universal Value Function Approximators. In Proceedings of the
32nd International Conference on Machine Learning (Proceedings
of Machine Learning Research, Vol. 87), Francis Bach and David
Blei (Eds.). PMLR, Lille, France, 1312-1320. https://proceedings.
mlr.press/v37/schaull5.html

Connor Schenck and Dieter Fox. 2017. Visual closed-loop control
for pouring liquids. In 2017 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, Singapore, 2629-2636.
https://doi.org/10.1109/ICRA.2017.7989307

Connor Schenck and Dieter Fox. 2018. SPNets: Differentiable Fluid
Dynamics for Deep Neural Networks. In Proceedings of The 2nd
Conference on Robot Learning (Proceedings of Machine Learning
Research, Vol. 87), Aude Billard, Anca Dragan, Jan Peters, and
Jun Morimoto (Eds.). PMLR, Stockholm, Sweden, 317-335. https:
//proceedings.mlr.press/v87/schenck18a.html

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and
Philipp Moritz. 2015. Trust Region Policy Optimization. In Pro-
ceedings of the 32nd International Conference on Machine Learn-
ing (Proceedings of Machine Learning Research, Vol. 37), Fran-
cis Bach and David Blei (Eds.). PMLR, Lille, France, 1889-1897.
https://proceedings.mlr.press/v37/schulmanl5.html

Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopou-
los. 2015. Realistic Biomechanical Simulation and Control of Hu-
man Swimming. ACM Trans. Graph. 34, 1, Article 10 (dec 2015),
15 pages. https://doi.org/10.1145/2626346

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wier-
stra, and Martin Riedmiller. 2014. Deterministic Policy Gradient
Algorithms. In Proceedings of the 31st International Conference
on Machine Learning (Proceedings of Machine Learning Research,
Vol. 32), Eric P. Xing and Tony Jebara (Eds.). PMLR, Bejing, China,
387-395. https://proceedings.mlr.press/v32/silver14.html

Andrew Spielberg, Allan Zhao, Yuanming Hu, Tao Du, Wojciech Ma-
tusik, and Daniela Rus. 2019. Learning-in-the-loop optimization:
End-to-end control and co-design of soft robots through learned deep
latent representations. Advances in Neural Information Processing
Systems 32 (2019), 8284-8294.

Sebastian Starke, Yiwei Zhao, Fabio Zinno, and Taku Komura. 2021.
Neural Animation Layering for Synthesizing Martial Arts Movements.
ACM Trans. Graph. 40, 4, Article 92 (jul 2021), 16 pages. https:
//doi.org/10.1145/3450626.3459881

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learn-
ing: An Introduction. A Bradford Book, Cambridge, MA, USA.

Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. 2011. Articulated
Swimming Creatures. In ACM SIGGRAPH 2011 Papers (Vancou-
ver, British Columbia, Canada) (SIGGRAPH ’11). Association for
Computing Machinery, New York, NY, USA, Article 58, 12 pages.
https://doi.org/10.1145/1964921.1964953

Jie Tan, Greg Turk, and C. Karen Liu. 2012. Soft Body Locomotion.
ACM Trans. Graph. 31, 4, Article 26 (jul 2012), 11 pages. https:
//doi.org/10.1145/2185520.2185522

Jingwei Tang, Vinicius C. Azevedo, Guillaume Cordonnier, and
Barbara Solenthaler. 2021. Honey, I Shrunk the Do-
main: Frequency-aware Force Field Reduction for Efficien-
t Fluids Optimization. Computer Graphics Forum 40, 2
(2021), 339-353. https://doi.org/10.1111/cgf.142637 arX-
iv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142637

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

https://proceedings.neurips.cc/paper/2019/file/d324a0cc02881779dcda44a675fdcaaa-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d324a0cc02881779dcda44a675fdcaaa-Paper.pdf
https://doi.org/10.1145/3355089.3356497
https://doi.org/10.1145/2010324.1964978
https://doi.org/10.1145/2010324.1964978
https://doi.org/10.1109/IROS.2017.8202300
https://doi.org/10.1109/IROS.2017.8202300
https://doi.org/10.1145/3197565
https://doi.org/10.1145/3197565
https://doi.org/10.1145/3309486.3340246
https://doi.org/10.1145/3355089.3356501
https://doi.org/10.1145/3450626.3459670
https://doi.org/10.1145/944020.944025
https://doi.org/10.1145/944020.944025
https://doi.org/10.1177/0278364913506757
https://arxiv.org/abs/https://doi.org/10.1177/0278364913506757
https://arxiv.org/abs/1704.07854
https://proceedings.mlr.press/v97/rakelly19a.html
https://doi.org/10.1145/2601097.2601126
https://proceedings.mlr.press/v37/schaul15.html
https://proceedings.mlr.press/v37/schaul15.html
https://doi.org/10.1109/ICRA.2017.7989307
https://proceedings.mlr.press/v87/schenck18a.html
https://proceedings.mlr.press/v87/schenck18a.html
https://proceedings.mlr.press/v37/schulman15.html
https://doi.org/10.1145/2626346
https://proceedings.mlr.press/v32/silver14.html
https://doi.org/10.1145/3450626.3459881
https://doi.org/10.1145/3450626.3459881
https://doi.org/10.1145/1964921.1964953
https://doi.org/10.1145/2185520.2185522
https://doi.org/10.1145/2185520.2185522
https://doi.org/10.1111/cgf.142637
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.142637

16 e Bo Ren, Xiaohan Ye, Zherong Pan, and Taiyuan Zhang

Yuval Tassa, Tom Erez, and Emanuel Todorov. 2012. Synthesis and
stabilization of complex behaviors through online trajectory opti-
mization. In 2012 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems. IEEE, Vilamoura, Algarve, Portugal,
4906-4913. https://doi.org/10.1109/TROS.2012.6386025

Nils Thuerey. 2016. Interpolations of smoke and liquid simulations.
ACM Transactions on Graphics (TOG) 36, 1 (2016), 1-16.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken
Perlin. 2017. Accelerating Eulerian Fluid Simulation With Convo-
lutional Networks. In Proceedings of the 34th International Con-
ference on Machine Learning (Proceedings of Machine Learning
Research, Vol. 70), Doina Precup and Yee Whye Teh (Eds.). PMLR,
Sydney, Australia, 3424-3433. https://proceedings.mlr.press/v70/
tompsonl7a.html

Marc Toussaint, Jung-Su Ha, and Danny Driess. 2020. Describing
Physics For Physical Reasoning: Force-Based Sequential Manipula-
tion Planning. IEEE Robotics and Automation Letters 5, 4 (2020),
6209-6216. https://doi.org/10.1109/LRA.2020.3010462

Adrien Treuille, Antoine McNamara, Zoran Popovié¢, and Jos Stam.
2003. Keyframe Control of Smoke Simulations. ACM Trans. Graph.
22, 3 (jul 2003), 716723. https://doi.org/10.1145/882262.882337

Jack M Wang, Samuel R Hamner, Scott L Delp, and Vladlen Koltun.
2012. Optimizing locomotion controllers using biologically-based
actuators and objectives. ACM Transactions on Graphics (TOG)
31, 4 (2012), 1-11.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanc-
tot, and Nando Freitas. 2016. Dueling Network Architectures for
Deep Reinforcement Learning. In Proceedings of The 33rd Interna-
tional Conference on Machine Learning (Proceedings of Machine

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2022.

Learning Research, Vol. 48), Maria Florina Balcan and Kilian Q.
Weinberger (Eds.). PMLR, New York, New York, USA, 1995-2003.
https://proceedings.mlr.press/v48 /wangfl16.html

Jungdam Won, Deepak Gopinath, and Jessica Hodgins. 2020. A Scalable
Approach to Control Diverse Behaviors for Physically Simulated
Characters. ACM Trans. Graph. 39, 4, Article 33 (jul 2020), 12 pages.
https://doi.org/10.1145/3386569.3392381

You Xie, Erik Franz, Mengyu Chu, and Nils Thuerey. 2018. tempogan:
A temporally coherent, volumetric gan for super-resolution fluid flow.
ACM Transactions on Graphics (TOG) 37, 4 (2018), 1-15.

KangKang Yin, Kevin Loken, and Michiel Van de Panne. 2007. Sim-
bicon: Simple biped locomotion control. ACM Transactions on
Graphics (TOG) 26, 3 (2007), 105-es.

Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning Symmetric
and Low-Energy Locomotion. ACM Trans. Graph. 37, 4, Article
144 (jul 2018), 12 pages. https://doi.org/10.1145/3197517.3201397

Yunbo Zhang, Wenhao Yu, C Karen Liu, Charlie Kemp, and Greg
Turk. 2020. Learning to manipulate amorphous materials. ACM
Transactions on Graphics (TOG) 39, 6 (2020), 1-11.

Rui Zhao, Xudong Sun, and Volker Tresp. 2019. Maximum Entropy-
Regularized Multi-Goal Reinforcement Learning. In Proceedings of
the 36th International Conference on Machine Learning (Proceed-
ings of Machine Learning Research, Vol. 97), Kamalika Chaudhuri
and Ruslan Salakhutdinov (Eds.). PMLR, Long Beach, California,
USA, 7553-7562. https://proceedings.mlr.press/v97/zhao19d.html

Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid.
ACM Transactions on Graphics (TOG) 24, 3 (2005), 965-972.

https://doi.org/10.1109/IROS.2012.6386025
https://proceedings.mlr.press/v70/tompson17a.html
https://proceedings.mlr.press/v70/tompson17a.html
https://doi.org/10.1109/LRA.2020.3010462
https://doi.org/10.1145/882262.882337
https://proceedings.mlr.press/v48/wangf16.html
https://doi.org/10.1145/3386569.3392381
https://doi.org/10.1145/3197517.3201397
https://proceedings.mlr.press/v97/zhao19d.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 Fluid Control
	2.2 Controller Design for Solid Objects
	2.3 Transfer Learning and Multi-Task RL

	3 Problem Formulation
	3.1 Coupled Fluid-Solid Dynamics System
	3.2 Simulator-Transferable, Multi-Task Control

	4 Method
	4.1 Network Architecture
	4.2 Off-Policy Reinforcement Learning
	4.3 Controller Transfer
	4.4 Multi-Tasking
	4.5 Overall Algorithm

	5 Experiments & Evaluation
	5.1 Solid Scooping from Water Tank
	5.2 Targeted Solid Scooping
	5.3 3D Multi-Solid Balancing
	5.4 3D Multi-Solid Juggling
	5.5 Multi-Solid Music Player

	6 Conclusions & Limitations
	A Architecture Parameters
	Acknowledgments
	References

